11 research outputs found

    Aberrant Epstein-Barr virus persistence in HIV carriers is characterized by anti-Epstein-Barr virus IgA and high cellular viral loads with restricted transcription

    No full text
    OBJECTIVE: Epstein-Barr virus (EBV)-positive lymphomas in HIV carriers are paralleled by elevated EBV-DNA loads in the circulation. Approximately 20% of asymptomatic HIV carriers also show elevated circulating EBV-DNA loads. We aimed to characterize the nature of this EBV DNA and to determine the transcriptional phenotype of EBV in blood, in relation to serological parameters. DESIGN: A total of 197 random asymptomatic HIV carriers, representing 2% of the Dutch HIV-positive population, were sampled for blood, peripheral blood mononuclear cells and plasma. In addition, 39 EBV-DNA carriers were sampled twice, with a 5-year interval. METHODS: EBV-DNA loads were determined by LightCycler-based real-time polymerase chain reaction (PCR). EBV transcription was studied by nucleic acid sequence-based amplification and reverse transcriptase PCR. IgA and IgG antibodies to EBV antigens EBNA1 and VCA-p18 were quantified by synthetic peptide-based enzyme-linked immunosorbent assay. RESULTS: : Elevated EBV-DNA loads were found in whole blood of 19.3% of the tested HIV population, which were persistent in 82%. Plasma samples were EBV-DNA negative and circulating EBV DNA could be attributed to the B-cell compartment. Transcription of only LMP2 and (non-translated) transcripts from the BamHI-A region of the EBV genome was found, whereas EBNA1, LMP1 and lytic EBV transcripts were absent despite high cellular EBV-DNA loads. IgA-reactivity to VCA-p18 was seen in 69%. IgG to VCA-p18 was significantly higher in high EBV-DNA load carriers. CONCLUSION: Asymptomatic HIV carriers show aberrant EBV persistence in the circulation, characterized by elevated, B-cell-associated EBV-DNA loads. EBV transcription is restricted, arguing for EBV gene shutdown in circulating EBV-carrying B cells. Increased IgA and IgG reactive to VCA-p18 is indicative of increased lytic EBV replication, possibly occurring at mucosal lymphoid sites but not in the circulation

    Impaired Repair of Ionizing Radiation-Induced DNA Damage in Cockayne Syndrome Cells

    No full text
    Cramers, P., Verhoeven, E. E., Filon, A. R., Rockx, D. A. P., Santos, S. J., van der Leer, A. A., Kleinjans, J. C. S., van Zeeland, A. A. and Mullenders, L. H. F. Impaired Repair of Ionizing Radiation-Induced DNA Damage in Cockayne Syndrome Cells. Radiat. Res. 175, 432-443 (2011). Cockayne syndrome (CS) cells are defective in transcription-coupled repair (TCR) and sensitive to oxidizing agents, including ionizing radiation. We examined the hypothesis that TCR plays a role in ionizing radiation-induced oxidative DNA damage repair or alternatively that CS plays a role in transcription elongation after irradiation. Irradiation with doses up to 100 Gy did not inhibit RNA polymerase II-dependent transcription in normal and CS-B fibroblasts. In contrast, RNA polymerase I-dependent transcription was severely inhibited at 5 Gy in normal cells, indicating different mechanisms of transcription response to X rays. The frequency of radiation-induced base damage was 2 x 10(-7) lesions/base/Gy, implying that 150 Gy is required to induce one lesion/30-kb transcription unit; no TCR of X-ray-induced base damage in the p53 gene was observed. Therefore, it is highly unlikely that defective TCR underlies the sensitivity of CS to ionizing radiation. Overall genome repair levels of radiation-induced DNA damage measured by repair replication were significantly reduced in CS-A and CS-B cells. Taken together, the results do not provide evidence for a key role of TCR in repair of radiation-induced oxidative damages in human cells; rather, impaired repair of oxidative lesions throughout the genome may contribute to the CS phenotype

    BIRC2–BIRC3 amplification: a potentially druggable feature of a subset of head and neck cancers in patients with Fanconi anemia

    No full text
    Head-and-neck squamous cell carcinomas (HNSCCs) are relatively common in patients with Fanconi anemia (FA), a hereditary chromosomal instability disorder. Standard chemo-radiation therapy is not tolerated in FA due to an overall somatic hypersensitivity to such treatment. The question is how to find a suitable alternative treatment. We used whole-exome and whole genome mRNA sequencing to identify major genomic and transcriptomic events associated with FA-HNSCC. CRISPR-engineered FA-knockout models were used to validate a number of top hits that were likely to be druggable. We identified deletion of 18q21.2 and amplification of 11q22.2 as prevailing copy-number alterations in FA HNSCCs, the latter of which was associated with strong overexpression of the cancer-related genes YAP1, BIRC2, BIRC3 (at 11q22.1-2). We then found the drug AZD5582, a known small molecule inhibitor of BIRC2-3, to selectively kill FA tumor cells that overexpressed BIRC2-3. This occurred at drug concentrations that did not affect the viability of untransformed FA cells. Our data indicate that 11q22.2 amplifications are relatively common oncogenic events in FA-HNSCCs, as holds for non FA-HNSCC. Therefore, chemotherapeutic inhibition of overexpressed BIRC2-3 may provide the basis for an approach to develop a clinically realistic treatment of FA-HNSCCs that carry 11q22.2 amplifications

    Identification of the Fanconi Anemia Complementation Group I Gene, FANCI

    No full text
    To identify the gene underlying Fanconi anemia (FA) complementation group I we studied informative FA-I families by a genome-wide linkage analysis, which resulted in 4 candidate regions together encompassing 351 genes. Candidates were selected via bioinformatics and data mining on the basis of their resemblance to other FA genes/proteins acting in the FA pathway, such as: degree of evolutionary conservation, presence of nuclear localization signals and pattern of tissue-dependent expression. We found a candidate, KIAA1794 on chromosome 15q25-26, to be mutated in 8 affected individuals previously assigned to complementation group I. Western blots of endogenous FANCI indicated that functionally active KIAA1794 protein is lacking in FA-I individuals. Knock-down of KIAA1794 expression by siRNA in HeLa cells caused excessive chromosomal breakage induced by mitomycin C, a hallmark of FA cells. Furthermore, phenotypic reversion of a patient-derived cell line was associated with a secondary genetic alteration at the KIAA1794 locus. These data add up to two conclusions. First, KIAA1794 is a FA gene. Second, this gene is identical to FANCI, since the patient cell lines found mutated in this study included the reference cell line for group I, EUFA592

    Acquired cross-linker resistance associated with a novel spliced BRCA2 protein variant for molecular phenotyping of BRCA2 disruption

    No full text
    BRCA2 encodes a protein with a fundamental role in homologous recombination that is essential for normal development. Carrier status of mutations in BRCA2 is associated with familial breast and ovarian cancer, while bi-allelic BRCA2 mutations can cause Fanconi anemia (FA), a cancer predisposition syndrome with cellular cross-linker hypersensitivity. Cancers associated with BRCA2 mutations can acquire chemo-resistance on relapse. We modeled acquired cross-linker resistance with an FA-derived BRCA2-mutated acute myeloid leukemia (AML) platform. Associated with acquired cross-linker resistance was the expression of a functional BRCA2 protein variant lacking exon 5 and exon 7 (BRCA2 δE5+7), implying a role for BRCA2 splicing for acquired chemo-resistance. Integrated network analysis of transcriptomic and proteomic differences for phenotyping of BRCA2 disruption infers impact on transcription and chromatin remodeling in addition to the DNA damage response. The striking overlap with transcriptional profiles of FA patient hematopoiesis and BRCA mutation associated ovarian cancer helps define and explicate the â € BRCAness' profile

    A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51

    No full text
    Fanconi anaemia (FA) is a hereditary disease featuring hypersensitivity to DNA cross-linker-induced chromosomal instability in association with developmental abnormalities, bone marrow failure and a strong predisposition to cancer. A total of 17 FA disease genes have been reported, all of which act in a recessive mode of inheritance. Here we report on a de novo g.41022153G>A; p.Ala293Thr (NM-002875) missense mutation in one allele of the homologous recombination DNA repair gene RAD51 in an FA-like patient. This heterozygous mutation causes a novel FA subtype, 'FA-Rffrt ', which appears to be the first subtype of FA caused by a dominant-negative mutation. The patient, who features microcephaly and mental retardation, has reached adulthood without the typical bone marrow failure and paediatric cancers. Together with the recent reports on RAD51-associated congenital mirror movement disorders, our results point to an important role for RAD51-mediated homologous recombination in neurodevelopment, in addition to DNA repair and cancer susceptibility

    A novel Fanconi anemia subtype associated with a dominant-negative mutation in RAD51

    No full text
    Fanconi anemia (FA) is a hereditary disease featuring hypersensitivity to DNA cross-linker-induced chromosomal instability in association with developmental abnormalities, bone marrow failure and a strong predisposition to cancer. 17 FA disease genes have been reported, all of which act in a recessive mode of inheritance. Here we report on a de novo g.41022153G>A; p.Ala293Thr (NM_002875) missense mutation in one allele of the homologous recombination DNA repair gene RAD51 in an FA-like patient. This heterozygous mutation causes a novel FA subtype, “FA-R”, which appears to be the first subtype of FA caused by a dominant-negative mutation. The patient, who features microcephaly and mental retardation, has reached adulthood without the typical bone marrow failure and pediatric cancers. Together with the recent reports on RAD51-associated congenital mirror movement disorders our results point to an important role for RAD51-mediated homologous recombination in neurodevelopment, in addition to DNA repair and cancer susceptibility
    corecore