5 research outputs found
Recommended from our members
Large area bismuth absorbers for X-ray microcalorimeters
Two challenges facing the use of large area (2mm×2mm) bismuth absorbers for microcalorimetry are uncertainties in the heat capacity of bismuth and the effects of lateral heat conduction and position dependence due to the absorber's large size. We have measured the heat capacity of three Bi samples to be 0.3−0.6JK−1m−3 at 100mK. These absorbers also exhibit response variations as phonons created by an X-ray event at an absorber edge will take longer to propagate to the thermometer attachment point than those at the absorber center. This effect may degrade the detector's energy resolution if the propagation time is not very short compared to the thermometer time constant. We show that the response of the largest absorber varies by ∼4% across its area
Recommended from our members
Design of the second generation XRS detector
Microcalorimeter performance is limited by non-ideal effects that were not included in the standard theory of bolometers and microcalorimeters developed 20 years ago by Mather (Appl. Opt. 21 (1982) 1125). These include the hot-electron effect, absorber decoupling, thermometer non-ohmic behavior, and all related extra noise sources. Models that include these effects have been developed and can be used to optimize the design of microcalorimeters for best performance. The design of the array for the XRS detector on the Astro-E2 satellite was completely optimized based on the required performance and on the characteristics of the materials used. The characteristic heat capacity and thermal conductivity of all the detector components have been measured and the values have been used as input to the models to design the detector geometry for best performance. Mechanical modeling has also been carried out in parallel to ensure the mechanical integrity of the microcalorimeter. We report here the analysis involved in the optimization of the detectors, and the comparison between modeled and measured performance
Recommended from our members
The next-generation microcalorimeter array of XRS on Astro-E2
The square-format 32-pixel microcalorimeter array at the focal plane of the high-resolution X-ray spectrometer on the Astro-E2 X-ray Observatory is the first of a new generation of silicon-based microcalorimeters. This array has numerous advantages over its predecessor, the bilinear array that was launched on Astro-E. Foremost among its benefits are: (1) the energy resolution is improved by a factor of two at 6keV (now 6eV FWHM), (2) the thermal time constant is a factor of two faster, and (3) each pixel has a Gaussian line response. We will discuss the design changes that have led to these and other advantages
Systems analysis of RhoGEF and RhoGAP regulatory proteins reveals spatially organized RAC1 signalling from integrin adhesions
Rho GTPases are central regulators of the cytoskeleton and, in humans, are controlled by 145 multidomain guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs). How Rho signalling patterns are established in dynamic cell spaces to control cellular morphogenesis is unclear. Through a family-wide characterization of substrate specificities, interactomes and localization, we reveal at the systems level how RhoGEFs and RhoGAPs contextualize and spatiotemporally control Rho signalling. These proteins are widely autoinhibited to allow local regulation, form complexes to jointly coordinate their networks and provide positional information for signalling. RhoGAPs are more promiscuous than RhoGEFs to confine Rho activity gradients. Our resource enabled us to uncover a multi-RhoGEF complex downstream of G-protein-coupled receptors controlling CDC42-RHOA crosstalk. Moreover, we show that integrin adhesions spatially segregate GEFs and GAPs to shape RAC1 activity zones in response to mechanical cues. This mechanism controls the protrusion and contraction dynamics fundamental to cell motility. Our systems analysis of Rho regulators is key to revealing emergent organization principles of Rho signalling