796 research outputs found
Effects of radiation on charge-coupled devices
The effects of 1 MeV electron irradiation upon the performance of two phase, polysilicon aluminum gate CCDs are reported. Both n- and p-surface channel and n-buried channel devices are investigated using 64- and 128-stage line arrays. Characteristics measured as a function of radiation dose include: Transfer inefficiency, threshold voltage, field effect mobility, interface state density, full well signal level and dark current. Surface channel devices are found to degrade considerably at less than 10 to the 5th power rads (Si) due to the large increase in fast interface state density caused by radiation. Buried channel devices maintain efficient operation to the highest dose levels used
Maternal Characteristics Associated with Injury-related Infant Death in West Virginia, 2010-2014
Although injury-related deaths have been documented among children and adult populations, insufficient attention has been directed towards injury-related infant deaths. The objective of this retrospective study was to investigate maternal and infant characteristics associated with injury-related infant deaths in West Virginia. Birth and infant mortality data for 2010–2014 were sourced from the West Virginia Bureau for Public Health, Charleston. Relative risk was calculated using log-binomial regression utilizing generalized estimating equations. Maternal characteristics associated with injury-related infant mortality in West Virginia were race/ethnicity ( = 7.48, p = .03), and smoking during pregnancy (, p \u3c .00). Risk of a Black Non-Hispanic infant suffering an injury-related death was 4.0 (95% CL 1.7, 9.3) times that of infants of other races/ethnicities. Risk of an infant dying from an injury-related cause, if the mother smoked during pregnancy, was 2.9 (95% CL 1.6, 5.0) times the risk of such a death if maternal smoking status during pregnancy is unknown or no smoking, controlling for race/ethnicity. This study provides important information to public health stakeholders at both the state and local levels in designing interventions for partial reduction or prevention of injury-related infant mortality in West Virginia
Nonchaotic Stagnant Motion in a Marginal Quasiperiodic Gradient System
A one-dimensional dynamical system with a marginal quasiperiodic gradient is
presented as a mathematical extension of a nonuniform oscillator. The system
exhibits a nonchaotic stagnant motion, which is reminiscent of intermittent
chaos. In fact, the density function of residence times near stagnation points
obeys an inverse-square law, due to a mechanism similar to type-I
intermittency. However, unlike intermittent chaos, in which the alternation
between long stagnant phases and rapid moving phases occurs in a random manner,
here the alternation occurs in a quasiperiodic manner. In particular, in case
of a gradient with the golden ratio, the renewal of the largest residence time
occurs at positions corresponding to the Fibonacci sequence. Finally, the
asymptotic long-time behavior, in the form of a nested logarithm, is
theoretically derived. Compared with the Pomeau-Manneville intermittency, a
significant difference in the relaxation property of the long-time average of
the dynamical variable is found.Comment: 11pages, 5figure
Efficient optical activation of ion-implanted Zn acceptors in GaN by annealing under 10 kbar N2 overpressure
We continue our investigations into the optical activation of Zn-implanted GaN annealed under ever higher N2 overpressure. The samples studied were epitaxial GaN/sapphire layers of good optical quality which were implanted with a 1013 cm−2 dose of Zn+ ions at 200 keV, diced into equivalent pieces and annealed under 10 kbar of N2. The N2 overpressure permitted annealing at temperatures up to 1250°C for 1 hr without GaN decomposition. The blue Zn-related photoluminescence (PL) signal rises sharply with increasing anneal temperature. The Zn-related PL intensity in the implanted sample annealed at 1250°C exceeded that of the epitaxially doped GaN:Zn standard proving that high temperature annealing of GaN under kbar N2 overpressure can effectively remove implantation damage and efficiently activate implanted dopants in GaN. We propose a lateral LED device which could be fabricated using ion implanted dopants activated by high temperature annealing at high pressur
Recurrence and algorithmic information
In this paper we initiate a somewhat detailed investigation of the
relationships between quantitative recurrence indicators and algorithmic
complexity of orbits in weakly chaotic dynamical systems. We mainly focus on
examples.Comment: 26 pages, no figure
Optical spectroscopy studies of Cu2ZnSnSe4 thin films
Cu2ZnSnSe4 thin films were synthesised by selenisation of magnetron sputtered metal precursors. The band gap determined from the absorption spectra increases from 1.01 eV at 300 K to 1.05 eV at 4.2 K. In lower quality films photoluminescence spectra show a broad, low intensity asymmetric band associated with a recombination of free electrons and holes localised on acceptors in the presence of spatial potential fluctuations. In high quality material the luminescence band becomes intense and narrow resolving two phonon replicas. Its shifts at changing excitation power suggest donor–acceptor pair recombination mechanisms. The proposed model involving two pairs of donors and acceptors is supported by the evolution of the band intensity and spectral position with temperature. Energy levels of the donors and acceptors are estimated using Arrhenius quenching analysis
Reflection thermal diffuse x-ray scattering for quantitative determination of phonon dispersion relations
Synchrotron reflection x-ray thermal diffuse scattering (TDS) measurements, rather than previously reported transmission TDS, are carried out at room temperature and analyzed using a formalism based upon second-order interatomic force constants and long-range Coulomb interactions to obtain quantitative determinations of MgO phonon dispersion relations ℏω_j(q), phonon densities of states g(ℏω), and isochoric temperature-dependent vibrational heat capacities c_v(T). We use MgO as a model system for investigating reflection TDS due to its harmonic behavior as well as its mechanical and dynamic stability. Resulting phonon dispersion relations and densities of states are found to be in good agreement with independent reports from inelastic neutron and x-ray scattering experiments. Temperature-dependent isochoric heat capacities c_v(T), computed within the harmonic approximation from ℏω_j(q) values, increase with temperature from 0.4 × 10^(−4) eV/atom K at 100 K to 1.4 × 10^(−4) eV/atom K at 200 K and 1.9 × 10^(−4) eV/atom K at 300 K, in excellent agreement with isobaric heat capacity values c_p(T) between 4 and 300 K. We anticipate that the experimental approach developed here will be valuable for determining vibrational properties of heteroepitaxial thin films since the use of grazing-incidence (θ≲θ_c, where θ_c is the density-dependent critical angle) allows selective tuning of x-ray penetration depths to ≲10nm
Candidate malaria susceptibility/protective SNPs in hospital and population-based studies: the effect of sub-structuring
Background: Populations of East Africa including Sudan, exhibit some of the highest indices of genetic diversity in the continent and worldwide. The current study aims to address the possible impact of population structure and population stratification on the outcome of case-control association-analysis of malaria candidate-genes in different Sudanese populations, where the pronounced genetic heterogeneity becomes a source of concern for the potential effect on the studies outcome. Methods: A total of 72 SNPs were genotyped using the Sequenom iPLEX Gold assay in 449 DNA samples that included; cases and controls from two village populations, malaria patients and out-patients from the area of Sinnar and additional controls consisting of healthy Nilo-Saharan speaking individuals. The population substructure was estimated using the Structure 2.2 programme. Results & Discussion: The Hardy-Weinberg Equilibrium values were generally within expectation in Hausa and Massalit. However, in the Sinnar area there was a notable excess of homozygosity, which was attributed to the Whalund effect arising from population amalgamation within the sample. The programme STRUCTURE revealed a division of both Hausa and Massalit into two substructures with the partition in Hausa more pronounced than in Massalit; in Sinnar there was no defined substructure. More than 25 of the 72 SNPs assayed were informative in all areas. Some important SNPs were not differentially distributed between malaria cases and controls, including SNPs in CD36 and NOS2. A number of SNPs showed significant p-values for differences in distribution of genotypes between cases and controls including: rs1805015 (in IL4R1) (P=0001), rs17047661 (in CR1) (P=0.02) and rs1800750 (TNF-376) (P=0.01) in the hospital samples; rs1050828 (G6PD+202) (P=0.02) and rs1800896 (IL10-1082) (P=0.04) in Massalit and rs2243250 (IL4-589) (P=0.04) in Hausa. Conclusions: The difference in population structure partly accounts for some of these significant associations, and the strength of association proved to be sensitive to all levels of sub-structuring whether in the hospital or population-based study
Landau levels of the C-exciton in CuInSe2 studied by magneto-transmission
The electronic structure of the solar cell absorber CuInSe2 is studied using magneto-transmission in thin polycrystalline films at magnetic fields up to 29 T. A, B, and C free excitons are resolved in absorption spectra at zero field and a Landau level fan generated by diamagnetic exciton recombination is observed for fields above 7 T. The dependence of the C band exciton binding energy on magnetic fields, calculated using a hydrogenic approximation, is used to determine the C exciton Rydberg at 0 T (8.5 meV), band gap (1.2828 eV), and hole effective mass mso = (0.31 ± 0.12)m0 for the C valence sub-band
- …