196 research outputs found

    Conception of a near-IR spectrometer for ground-based observations of massive stars

    Full text link
    In our contribution, we outline the different steps in the design of a fiber-fed spectrographic instrument that intends to observe massive stars. Starting from the derivation of theoretical relationships from the scientific requirements and telescope characteristics, the entire optical design of the spectrograph is presented. Specific optical elements, such as a toroidal lens, are introduced to improve the instrument’s performances. Then, the verification of predicted optical performances is investigated through optical analyses such as resolution checking. Eventually, the star positioning system onto the central fiber core is explained.Massive stars: drivers of the evolution of the Univers

    MAXIMIZATION OF PULL-IN VOLTAGE OF MICRO-ELECTROMECHANICAL STRUCTURES USING TOPOLOGY OPTIMIZATION

    Full text link
    The design problem consists in maximizing the pull-in voltage using topology optimization method, which is formulated as an optimal material distribution. In addition to the classical volume constraint, different structural constraints could be taken into consideration. Sensitivity analysis is one of the key issues of the optimization process and is performed with the formulation of eigenvalue topology optimization problems. Here the paper investigates topology optimization of strongly coupled electromechanical systems. To avoid important modifications of the electric field by the optimization process, this first study considers a non design electrode and use topology optimization to design an optimal suspension structure. Solution procedure of the optimization problem is based on CONLIN optimizer using a sequential convex programming. This method that has proved its efficiency in many structural problems (sizing, shape) is here tailored to strongly coupled multiphysics design problems under consideration. The choice of appropriate explicit convex approximations schemes for multiphysic problems is investigated. The proposed method is illustrated and validated on microbeam optimization applications

    Design and verification of the Far Ultraviolet Spectrographic Imager (FUV-SI) for the IMAGE mission

    Full text link
    peer reviewedThe IMAGE FUV-SI is simultaneously imaging auroras at 121.8 nm and 135.8 nm. The spectrograph design challenge is the efficient rejection of the intense Lyman-alpha emission at 121.6 nm while passing its Doppler-shifted component at 121.8 nm. The FUV-SI opto-mechanical design, analysis integration, and verification of performances against environment are discussed in this paper. In absence of STM environmental constraints at subsystem levels are derived analytically from F.E.M. and used for pre-qualifying optical subsystems

    Phase Change Material Device for Spacecraft Thermal Control

    Full text link
    On board a satellite, the experiments and subsystems have to be maintained within specified temperature limits. Phase Change Materials (PCM) offer the possibility to store thermal energy directly as latent heat of fusion. Usually, the melting PCM can easily be used in reversible, closed systems. Two advantages of a PCM device are the stability of temperature control and the absence of moving parts. The heat-storage requirement is mainly defined by the duty cycle along the orbital period. A trade-off is presented for typical missions, which takes into account the temperature range, the weight and thermal conductivity of the PCM device together with the specific design of the container. Candidates PCM for space applications are reviewed according to their main characteristics such as latent heat, phase transition temperature, conductivity, density but also corrosion potential, hysteresis and ageing. Potential weight and power gains are finally presented for selected missions

    Phase Change Material Heat Accumulator for the HEXAFLY-INT Hypersonic glider

    Get PDF
    International audienceFrom the launchers to the spacecrafts, various on-board systems have to be maintained within specified temperature limits. Phase Change Materials (PCM) offer the possibility to store thermal energy directly as latent heat of fusion. Among the advantages of a PCM device are the stability of temperature control, the absence of moving parts and a reduced mass. The HEXAFLY-INTERNATIONAL project aims to flight test an experimental vehicle above Mach 7 to verify its potential for a high aerodynamic efficiency during a free-flight. European Major Resarch Centers and Industries are collaborating on this challenge. The presented activity focus on the use of a Phase Change Material device already developed under ESA projects up to TRL 6. Two efficient heat accumulators using PCM will allow avoiding overheating of electronic units such as telemetry & telecommand receivers, transmitters and data acquisition units for the hypersonic flight. The paper presents the complete cycle of design and environmental testing for the two PCM Heat Accumulators selected for the flight. The conclusions will show the benefit of adopting a Phase Change Material Heat Accumulator

    The extreme UV imager telescope on-board the Solar Orbiter mission: overview of phase C and D

    Full text link
    The Solar Orbiter mission is composed of ten scientific instruments dedicated to the observation of the Sun’s atmosphere and its heliosphere, taking advantage of an out-of ecliptic orbit and at perihelion reaching a proximity close to 0.28 A.U. On board Solar Orbiter, the Extreme Ultraviolet Imager (EUI) will provide full-Sun image sequences of the solar corona in the extreme ultraviolet (17.1 nm and 30.4 nm), and high-resolution image sequences of the solar disk in the extreme ultraviolet (17.1 nm) and in the vacuum ultraviolet (121.6 nm). The EUI concept uses heritage from previous similar extreme ultraviolet instrument. Additional constraints from the specific orbit (thermal and radiation environment, limited telemetry download) however required dedicated technologies to achieve the scientific objectives of the mission. The development phase C of the instrument and its sub-systems has been successfully completed, including thermo-mechanical and electrical design validations with the Structural Thermal Model (STM) and the Engineering Model (EM). The instrument STM and EM units have been integrated on the respective spacecraft models and will undergo the system level tests. In parallel, the Phase D has been started with the sub-system qualifications and the flight parts manufacturing. The next steps of the EUI development will be the instrument Qualification Model (QM) integration and qualification tests. The Flight Model (FM) instrument activities will then follow with the acceptance tests and calibration campaigns

    SURFACE ENGINEERING FOR PARTS MADE BY ADDITIVE MANUFACTURING

    Full text link
    peer reviewedthe surface preparation of metal parts made by additive manufacturing (AM). AM is a technology of choice for manufacturing of parts with complex shapes (heat exchangers, RF supports, optical parts…) and integrated functions such as conformal cooling channels, clips, hinges, etc. This opens the door for lightweight parts which are of prime importance for space applications. The potential of the AM technologies is however impeded by the quite rough surface finish that is observed on the as-manufactured parts. It is known that such a finish is likely to impact the performance of the parts. Several post-treatment techniques can be applied to improve the surface condition of the AM parts. However, so far, the influence of the successive post-processing steps on the final properties is not well established. Therefore, a better understanding of the impact of surface characteristics on the material behaviour is needed to expand the use of AM for high performance parts. The objective of this study, supported by ESA, is to propose and evaluate various surface finishing techniques for parts made by the AM technologies, in order to check their compatibility, evaluate their properties and derive guidelines for future applications. CRM is the prime proposer of this study and is in charge of the surface treatment and characterisations. Sirris additive manufacturing facilities are used to produce the parts. Thales Alenia Space and Walopt are included into the industrial team to provide concrete application cases. The study focuses on metals. Two metals under study are presented here: AlSi10Mg and Ti6Al4V. This paper is devoted to the early results of the first steps of surface preparation, namely material removal from the surface of the produced parts in order to improve their surface properties. As a first phase, tribo-finishing (TF) is tested on prototype parts to check its capabilities. Surface and volume parameters are analyzed, namely achieved roughness, material removal rate, location of removed material. The limitations in terms of geometry and applicability are discussed as well. These first observations should serve as guidelines for further application of AM for the design of parts used in space industry
    • …
    corecore