1,571 research outputs found
Effects of Community Exercise Therapy on Metabolic, Brain, Physical, and Cognitive Function Following Stroke : A Randomized Controlled Pilot Trial
© The Author(s) 2014.Peer reviewedPostprintPostprin
Detection of radio frequency magnetic fields using nonlinear magneto-optical rotation
We describe a room-temperature alkali-metal atomic magnetometer for detection
of small, high frequency magnetic fields. The magnetometer operates by
detecting optical rotation due to the precession of an aligned ground state in
the presence of a small oscillating magnetic field. The resonance frequency of
the magnetometer can be adjusted to any desired value by tuning the bias
magnetic field. We demonstrate a sensitivity of in a 3.5 cm diameter, paraffin coated cell. Based
on detection at the photon shot-noise limit, we project a sensitivity of
.Comment: 6 pages, 6 figure
Unusually large polarizabilities and "new" atomic states in Ba
Electric polarizabilities of four low-J even-parity states and three low-J
odd-parity states of atomic barium in the range to $36,000\
^{-1}6s8p
^3P_{0,2}$ is suggested.Comment: 29 pages, 12 figure
APC NbSn superconductors based on internal oxidation of Nb-Ta-Hf alloys
In the last few years, a new type of NbSn superconducting composite,
containing a high density of artificial pinning centers (APC) generated via an
internal oxidation approach, has demonstrated a significantly superior
performance relative to present, state-of-the-art commercial NbSn
conductors. This was achieved via the internal oxidation of Nb-4at.%Ta-1at.%Zr
alloy. On the other hand, our recent studies have shown that internal oxidation
of Nb-Ta-Hf alloys can also lead to dramatic improvements in NbSn
performance. In this work we follow up this latter approach, fabricating a
61-stack APC wire based on the internal oxidation of Nb-4at.%Ta-1at.%Hf alloy,
and compare its critical current density (Jc) and irreversibility field (Birr)
with APC wires made using Nb-4at.%Ta-1at.%Zr. A second goal of this work was to
improve the filamentary design of APC wires in order to improve their wire
quality and electromagnetic stability. Our new modifications have led to
significantly improved RRR and stability in the conductors, while still keeping
non-Cu Jc at or above the FCC Jc specification. Further improvement via
optimization of the wire recipe and design is ongoing. Finally, additional work
needed to make APC conductors ready for applications in magnets is discussed.Comment: Matches published versio
Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range
Recent work investigating resonant nonlinear magneto-optical rotation (NMOR)
related to long-lived (\tau\ts{rel} \sim 1 {\rm s}) ground-state atomic
coherences has demonstrated potential magnetometric sensitivities exceeding
for small () magnetic
fields. In the present work, NMOR using frequency-modulated light (FM NMOR) is
studied in the regime where the longitudinal magnetic field is in the
geophysical range (), of particular interest for many
applications. In this regime a splitting of the FM NMOR resonance due to the
nonlinear Zeeman effect is observed. At sufficiently high light intensities,
there is also a splitting of the FM NMOR resonances due to ac Stark shifts
induced by the optical field, as well as evidence of alignment-to-orientation
conversion type processes. The consequences of these effects for FM-NMOR-based
atomic magnetometry in the geophysical field range are considered.Comment: 8 pages, 8 figure
Up-regulation of endothelial delta-like 4 expression correlates with vessel maturation in bladder cancer.
PURPOSE: Angiogenesis and vascular endothelial growth factor (VEGF) expression are associated with a poor outcome in bladder cancer. To understand more about the mechanisms, we studied the role of delta-like 4 (DLL4), an endothelial-specific ligand of the Notch signaling pathway, in bladder cancer angiogenesis. EXPERIMENTAL DESIGN: The expression of DLL4, CD34, and VEGF were studied in a cohort of 60 bladder tumors and 10 normal samples using quantitative PCR. In situ hybridization was used to study the pattern of DLL4 expression in 22 tumor and 9 normal samples. Serial sections were also stained for CD34 and alpha-smooth muscle actin (alpha-SMA) using conventional immunohistochemistry. RESULTS: The expression of DLL4 was significantly up-regulated in superficial (P < 0.01) and invasive (P < 0.05) bladder cancers. DLL4 expression significantly correlated with CD34 (P < 0.001) and VEGF (P < 0.001) expression. The in situ hybridization studies showed that DLL4 was highly expressed within bladder tumor vasculature. Additionally, DLL4 expression significantly correlated with vessel maturation as judged by periendothelial cell expression of alpha-SMA, 98.7% of DLL4-positive tumor vessels coexpressed alpha-SMA, compared with 64.5% of DLL4-negative tumor vessels (P < 0.001). High DLL4 expression may have prognostic value in superficial and invasive bladder. CONCLUSION: DLL4 expression is associated with vascular differentiation in bladder cancer; thus, targeting DLL4 may be a novel antiangiogenic therapy
A Study of the Scintillation Induced by Alpha Particles and Gamma Rays in Liquid Xenon in an Electric Field
Scintillation produced in liquid xenon by alpha particles and gamma rays has
been studied as a function of applied electric field. For back scattered gamma
rays with energy of about 200 keV, the number of scintillation photons was
found to decrease by 64+/-2% with increasing field strength. Consequently, the
pulse shape discrimination power between alpha particles and gamma rays is
found to reduce with increasing field, but remaining non-zero at higher fields.Comment: 15 pages, 12 figures, accepted by Nuclear Instruments and Methods in
Physics Research
Vacuum Squeezing in Atomic Media via Self-Rotation
When linearly polarized light propagates through a medium in which
elliptically polarized light would undergo self-rotation, squeezed vacuum can
appear in the orthogonal polarization. A simple relationship between
self-rotation and the degree of vacuum squeezing is developed. Taking into
account absorption, we find the optimum conditions for squeezing in any medium
that can produce self-rotation. We then find analytic expressions for the
amount of vacuum squeezing produced by an atomic vapor when light is
near-resonant with a transition between various low-angular-momentum states.
Finally, we consider a gas of multi-level Rb atoms, and analyze squeezing for
light tuned near the D-lines under realistic conditions.Comment: 10 pages, 6 figures; Submitted to PR
Measurement of Dielectric Suppression of Bremsstrahlung
In 1953, Ter-Mikaelian predicted that the bremsstrahlung of low energy
photons in a medium is suppressed because of interactions between the produced
photon and the electrons in the medium. This suppression occurs because the
emission takes place over on a long distance scale, allowing for destructive
interference between different instantaneous photon emission amplitudes. We
present here measurements of bremsstrahlung cross sections of 200 keV to 20 MeV
photons produced by 8 and 25 GeV electrons in carbon and gold targets. Our data
shows that dielectric suppression occurs at the predicted level, reducing the
cross section up to 75 percent in our data.Comment: 11 pages, format is postscript file, gzip-ed, uuencode-e
- …