8 research outputs found

    Summary Jurisdiction in Bankruptcy: Katchen v. Landy and Questions Left Unanswered

    Get PDF
    This article deals with a complex and conceptually difficult phase of bankruptcy law. It is not written for the beginner, for it does not contain all the background material necessary to effectuate a full understanding of the area. But it is extremely objective, and it exhaustively treats the relevant appellate court decisions. For the informed reader, therefore, it is both thought-provoking and an invaluable research tool

    Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host

    No full text
    Understanding the mechanism by which porous solids trap harmful gases such as CO(2) and SO(2) is essential for the design of new materials for their selective removal. Materials functionalized with amine groups dominate this field, largely because of their potential to form carbamates through H(2)N(未(-))路路路C(未(+))O(2) interactions, thereby trapping CO(2) covalently. However, the use of these materials is energy-intensive, with significant environmental impact. Here, we report a non-amine-containing porous solid (NOTT-300) in which hydroxyl groups within pores bind CO(2) and SO(2) selectively. In situ powder X-ray diffraction and inelastic neutron scattering studies, combined with modelling, reveal that hydroxyl groups bind CO(2) and SO(2) through the formation of O=C(S)=O(未(-))路路路H(未(+))-O hydrogen bonds, which are reinforced by weak supramolecular interactions with C-H atoms on the aromatic rings of the framework. This offers the potential for the application of new 'easy-on/easy-off' capture systems for CO(2) and SO(2) that carry fewer economic and environmental penalties

    Political, institutional, and bureaucratic fuel for the arms race

    No full text

    Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine

    No full text
    Abstract: Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine. A systematic review of evidence, across the key pillars of prevention, diagnosis, treatment and prognosis, outlines milestones that need to be met to enable the broad clinical implementation of precision medicine in diabetes care
    corecore