3 research outputs found

    Interactions between global climate change strategies and local air pollution: lessons learnt from the expansion of the power sector in Brazil

    Get PDF
    This study examines the interactions between local air pollutants and greenhouse gas emissions to assess potential synergies and trade-offs between local environmental pollution and climate policies, using the power generation sector in Brazil under different carbon scenarios up to 2050 as a case study. To this end, an integrated approach was developed, combining energy scenarios under different carbon mitigation targets and a local air pollution assessment model, tailored to the context of the Brazilian power sector. Results reveal that there are deep interactions between climate change mitigation and local air pollution abatement strategies. Increasing the diffusion of low-carbon technologies results in both mitigation of climate change and lower terrestrial acidification potential impacts, due to the rapid phase-out of fossil fuel power technologies. However, local air pollution indicators for particulate matter formation and human toxicity may rise in response to greenhouse gas emission mitigation constraints, indicating the existence of potential trade-offs. Some of these trade-offs can be offset by introducing available end-of-pipe pollution control measures reinforced by dedicated air quality policies

    Brazil’s emission trajectories in a well-below 2 °C world: the role of disruptive technologies versus land-based mitigation in an already low-emission energy system

    No full text
    The Nationally Determined Contributions (NDCs) to the Paris Agreement (PA) submitted so far do not put the world on track to meet the targets of the Agreement and by 2020 countries should ratchet up ambition in the new round of NDCs. Brazil’s NDC to the PA received mixed reviews and has been rated as “medium” ambition. We use the Brazil Land Use and Energy System (BLUES) model to explore low-emission scenarios for Brazil for the 2010–2050 period that cost-effectively raise ambition to levels consistent with PA targets. Our results reinforce the fundamental role of the agriculture, forest, and land use (AFOLU) sectors and explore inter-sectoral linkages to power generation and transportation. We identify transportation as a prime candidate for decarbonization, leveraging Brazil’s already low-carbon electricity production and its high bioenergy production. Results indicate the most important mitigation measures are electrification of the light-duty vehicle (LDV) fleet for passenger transportation, biodiesel and biokerosene production via Fischer-Tropsch synthesis from lignocellulosic feedstock, and intensification of agricultural production. The use of carbon capture and storage (CCS) as well as netzero deforestation make significant contributions. We identify opportunities for Brazil, but synergies and trade-offs across sectors should be minded when designing climate policies
    corecore