8,257 research outputs found

    The Galactic Disk Distribution of Planetary Nebulae with Warm Dust Emission Features: II

    Get PDF
    Can the distribution of warm-dust compositions in IR-bright galactic disk PNe be linked to the underlying stellar population? The PNe with warm dust emission represent a homogeneous population, which is presumably young and minimally affected by a possible dependence of PN lifetime on progenitor mass. The sample in paper I thus allows testing the predictions of single star evolution, through a comparison with synthetic distributions and under the assumption that tip-of-the-AGB and PN statistics are similar. We construct a schematic model for AGB evolution (adapted from Groenewegen & de Jong 1993), whose free-parameters are calibrated with the luminosity function (LF) of C stars in the LMC, the initial-final mass relation, and the range of PN compositions. The observed metallicity gradient and distribution of star forming regions with galactocentric radius (Bronfman et al. 2000) allow us to synthesise the galactic disk PN progenitor population. We find the fraction of O-rich PNe, f(O), is a tight constraint on AGB parameters. For our best model, a minimum PN progenitor mass Mmin=1Msun predicts that about 50% of all young PNe should be O-rich, compared to an observed fraction of 22%; thus Mmin=1.2Msun, at a 2sigma confidence level. By contrast, current AGB models for single stars can account neither for the continuous range of N enrichment (Leisy & Dennefeld 1996), nor for the observation that the majority of very C-rich PNe have Peimbert type I (paper I). f(O) is thus an observable much easier to model. The decrease in f(O) with galactocentric radius, as reported in paper I, is a strong property of the synthetic distribution, independent of Mmin. This trend reflects the sensitivity of the surface temperature of AGB stars and of the core mass at the first thermal pulse to the galactic metallicity gradient.Comment: accepted by MNRA

    Near-infrared and Millimeter Constraints on the Nuclear Energy Source of the Infrared Luminous Galaxy NGC 4418

    Full text link
    We present near-infrared and millimeter investigations of the nucleus of the infrared luminous galaxy NGC 4418, which previous observations suggest possesses a powerful buried AGN. We found the following main results: (1) The infrared K-band spectrum shows CO absorption features at 2.3-2.4 micron owing to stars and very strong H2 emission lines. The luminosity ratios of H2 emission lines are suggestive of a thermal origin, and the equivalent width of the H2 1-0 S(1) line is the second largest observed to date in an external galaxy, after the well-studied strong H2-emitting galaxy NGC 6240. (2) The infrared L-band spectrum shows a clear polycyclic aromatic hydrocarbon (PAH) emission feature at 3.3 micron, which is usually found in star-forming galaxies. The estimated star-formation luminosity from the observed PAH emission can account for only a small fraction of the infrared luminosity. (3) Millimeter interferometric observations of the nucleus reveal a high HCN (1-0) to HCO+ (1-0) luminosity ratio of 1.8, as has been previously found in pure AGNs. (4) The measurements of HCN (1-0) luminosity using a single-dish millimeter telescope show that the HCN (1-0) to infrared luminosity ratio is slightly larger than the average, but within the scattered range, for other infrared luminous galaxies. All of these results can be explained by the scenario in which, in addition to energetically-insignificant, weakly-obscured star-formation at the surface of the nucleus, a powerful X-ray emitting AGN deeply buried in dust and high density molecular gas is present.Comment: 31 pages, 9 figures, Accepted for publication in Astronomical Journal (2004 November issue

    Improved bounds on the set A(A+1)

    Full text link
    For a subset A of a field F, write A(A + 1) for the set {a(b + 1):a,b\in A}. We establish new estimates on the size of A(A+1) in the case where F is either a finite field of prime order, or the real line. In the finite field case we show that A(A+1) is of cardinality at least C|A|^{57/56-o(1)} for some absolute constant C, so long as |A| < p^{1/2}. In the real case we show that the cardinality is at least C|A|^{24/19-o(1)}. These improve on the previously best-known exponents of 106/105-o(1) and 5/4 respectively

    The Roche problem: some analytics

    Full text link
    Some exact analytical formulas are derived for the potential and mass ratio as a function of Lagrangian points position, in the classical Roche model of the close binary stars.Comment: aastex, 4 pp. ApJ accepte

    “Collaborative Production” and the Irish Boom - Work Organisation, Partnership and Direct Involvement in Irish Workplaces

    Get PDF
    A significant strand of recent social-scientific writing on Ireland has assigned great importance to various forms of “collaborative production”: new forms of work organisation, partnership and direct employee involvement — even suggesting that their growing diffusion might have played a major role in Ireland’s exceptional economic performance during the 1990s. This paper draws on the University College Dublin national workplace survey of employee relations to present an assessment of the degree to which new modes of collaborative production have gained ground in Ireland during the 1990s. While collaborative production is undoubtedly significant in many Irish workplaces, “exclusionary” forms of decision-making are shown to dominate the postures of establishments towards the handling of change. Arguments pointing to the “transformation”, actual or imminent, of work practices and employment relations in Ireland are rejected. Change in Ireland is shown to have much in common with developments in other economies, particularly those characterised by “Anglo-American” institutional systems, which are not readily permeable to collaborative production in its various modes.

    The silicate absorption profile in the ISM towards the heavily obscured nucleus of NGC 4418

    Get PDF
    The 9.7-micron silicate absorption profile in the interstellar medium provides important information on the physical and chemical composition of interstellar dust grains. Measurements in the Milky Way have shown that the profile in the diffuse interstellar medium is very similar to the amorphous silicate profiles found in circumstellar dust shells around late M stars, and narrower than the silicate profile in denser star-forming regions. Here, we investigate the silicate absorption profile towards the very heavily obscured nucleus of NGC 4418, the galaxy with the deepest known silicate absorption feature, and compare it to the profiles seen in the Milky Way. Comparison between the 8-13 micron spectrum obtained with TReCS on Gemini and the larger aperture spectrum obtained from the Spitzer archive indicates that the former isolates the nuclear emission, while Spitzer detects low surface brightness circumnuclear diffuse emission in addition. The silicate absorption profile towards the nucleus is very similar to that in the diffuse ISM in the Milky Way with no evidence of spectral structure from crystalline silicates or silicon carbide grains.Comment: 7 Pages, 3 figures. MNRAS in pres

    Vortex spectrum in superfluid turbulence: interpretation of a recent experiment

    Full text link
    We discuss a recent experiment in which the spectrum of the vortex line density fluctuations has been measured in superfluid turbulence. The observed frequency dependence of the spectrum, f−5/3f^{-5/3}, disagrees with classical vorticity spectra if, following the literature, the vortex line density is interpreted as a measure of the vorticity or enstrophy. We argue that the disagrement is solved if the vortex line density field is decomposed into a polarised field (which carries most of the energy) and an isotropic field (which is responsible for the spectrum).Comment: Submitted for publication http://crtbt.grenoble.cnrs.fr/helio/GROUP/infa.html http://www.mas.ncl.ac.uk/~ncfb

    Quantum turbulence at finite temperature: the two-fluids cascade

    Get PDF
    To model isotropic homogeneous quantum turbulence in superfluid helium, we have performed Direct Numerical Simulations (DNS) of two fluids (the normal fluid and the superfluid) coupled by mutual friction. We have found evidence of strong locking of superfluid and normal fluid along the turbulent cascade, from the large scale structures where only one fluid is forced down to the vorticity structures at small scales. We have determined the residual slip velocity between the two fluids, and, for each fluid, the relative balance of inertial, viscous and friction forces along the scales. Our calculations show that the classical relation between energy injection and dissipation scale is not valid in quantum turbulence, but we have been able to derive a temperature--dependent superfluid analogous relation. Finally, we discuss our DNS results in terms of the current understanding of quantum turbulence, including the value of the effective kinematic viscosity

    Distribution of dust clouds around the central engine of NGC 1068

    Get PDF
    We studied the distribution of dust clouds around the central engine of NGC 1068 based on shifted-and-added 8.8 - 12.3 micron (MIR) multi-filter images and 3.0 - 3.9 micron (L-band) spectra obtained with the Subaru Telescope. In a region of 100 pc (1.4") around the central peak, we successfully constructed maps of color temperatures and emissivities of the MIR and L-band continua as well as the 9.7 micron and 3.4 micron dust features with spatial resolutions of 26 pc (0.37") in the MIR and 22 pc (0.3") in the L-band. Our main results are: 1) color temperature of the MIR continuum scatters around the thermal equilibrium temperature with the central engine as the heat source while that of the L-band continuum is higher and independent upon distance from the central engine; 2) the peak of the 9.7 micron silicate absorption feature is shifted to a longer wavelength at some locations; 3) the ratio of the optical depths of the dust features is different from the Galactic values and show complicated spatial distribution; and 4) there is a pie shaped warm dust cloud as an enhancement in the emissivity of the MIR continuum extending about 50 pc to the north from the central engine. We speculate that material falls into the central engine through this cloud.Comment: 26 pages, 9 figures. Accepted for publication on Ap
    • 

    corecore