7 research outputs found
Mechanical Behaviour of Polyurethane from Castor oil Reinforced Sugarcane Straw Cellulose Composites
Simultaneous Production Of Xylooligosaccharides And Antioxidant Compounds From Sugarcane Bagasse Via Enzymatic Hydrolysis
Advances in industrial biotechnology offer potential opportunities for economic utilization of agro-industrial residues such as sugarcane bagasse, which is the major by-product of the sugarcane industry. Due to its abundant availability and despite the complex chemical composition, it can be considered an ideal substrate for microbial processes for the production of value-added products. In the present study we evaluated the enzymatic production of xylooligosaccharides (XOS) and antioxidant compounds from sugarcane bagasse using XynZ from Clostridium thermocellum, a naturally chimeric enzyme comprising activities of xylanase and feruloyl esterase along with a carbohydrate binding module (CBM6). In order to reveal the biotechnological potential of XynZ, the XOS released after enzymatic hydrolysis using different substrates were characterized by capillary electrophoresis and quantified by high performance anion exchange chromatography. In parallel, the antioxidant capacity related to the release of phenolic compounds was also determined. The results indicated noteworthy differences regarding the amount of XOS and antioxidant phenolic compounds produced, as well as the XOS profile, functions of the pre-treatment method employed. The ability of XynZ to simultaneously produce xylooligosaccharides, natural probiotics, phenolic compounds and antioxidant molecules from natural substrates such as sugarcane bagasse demonstrated the biotechnological potential of this enzyme. Production of value-added products from agro-industrial residues is of great interest not only for advancement in the biofuel field, but also for pharmaceutical and food industries. © 2013 Elsevier B.V.52770775Akpinar, O., Erdogan, K., Bostanci, S., Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials (2009) Carbohydr. Res., 344, pp. 660-666Benoit, I., Navarro, D., Marnet, N., Rakotomanomana, N., Lesage-Meesen, L., Sigoillot, J.C., Asther, M., Asther, M., Feruloyl esterases as a tool for the release of phenolic compounds from agro-industrial by-products (2006) Carbohydr. Res., 341, pp. 1820-1827Betancur, G.J.V., Pereira, N., Sugar cane bagasse as feedstock for second generation ethanol production. Part I: Diluted acid pretreatment optimization (2010) Electron. J. Biotechnol., 13, pp. 1-9Blum, D.L., Schubot, F.D., Ljungdahl, L.G., Rose, J.P., Wang, B.-C., Crystallization and preliminary X-ray analysis of the Clostridium thermocellum cellulosome xylanase Z feruloyl esterase domain (2000) Acta Crystallogr. D, 56, pp. 1027-1029Borges, L., Colodette, J.L., Pilo-Veloso, D., A utilização de perácidos na deslignificação e no branqueamento de polpas celulósicas (2001) Quim. Nova, 24, pp. 819-829Bragatto, J., Segato, F., Cota, J., Mello, D.B., Oliveira, M.M., Buckeridge, M.S., Squina, F.M., Driemeier, C., Insights on how the activity of an endoglucanase is affected by physical properties of insoluble celluloses (2012) J. Phys. Chem. B, 116, pp. 6128-6136Bragatto, J., Segato, F., Squina, F.M., Production of xylooligosaccharides (XOS) from delignified sugarcanebagasse by peroxide-HAc process using recombinant xylanase from Bacillus subtilis (2013) Ind. Crops Prod., 51, pp. 123-129Canettieri, E., Rocha, G.J.M., de Carvalho, J.R., Silva, J.B.A., Optimization of acid hydrolysis from the hemicellulosic fraction of the Eucalyptus grandis residue using response surface methodology (2007) Bioresour. Technol., 98, pp. 422-428Chapla, D., Pandit, P., Shah, A., Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics (2012) Bioresour. Technol., 115, pp. 215-221Cota, J., Alvarez, T.M., Citadini, A.P., Santos, C.R., de Oliveira Neto, M., Oliveira, R.R., Pastore, G.M., Squina, F.M., Mode of operation and low-resolution structure of a multi-domain and hyperthermophilic endo-b-1,3-glucanase from Thermotoga petrophila (2011) Biochem. Biophys. Res. Commun., 406, pp. 590-594Cota, J., Oliveira, L.C., Damásio, A.R.L., Citadini, A.P., Hoffmam, Z.B., Alvarez, T.M., Codima, C.A., Squina, F.M., Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations (2013) Biochim. Biophys. Acta, 1834, pp. 1492-1500Damásio, A.R., Braga, C.M., Brenelli, L.B., Citadini, A.P., Mandelli, F., Cota, J., de Almeida, R.F., Squina, F.M., Biomass-to-bio-products application of feruloyl esterase from Aspergillus clavatus (2012) Appl. Microbiol. Biotechnol., 97, pp. 6759-6767Davies, G., Henrissat, B., Structures and mechanisms of glycosyl hydrolases (1995) Structure, 3, pp. 853-859Fazary, A.E., Ju, Y.H., The large-scale use of feruloyl esterases in industry (2008) Biotechnol. Mol. Biol. Rev., 3, pp. 95-110Gonçalves, T.A., Damásio, A.R.L., Segato, F., Alvarez, T.M., Bragatto, J., Brenelli, L.B., Citadini, A.P.S., Squina, F.M., Functional characterization and synergic action of fungal xylanase and arabinofuranosidase for production of xylooligosaccharides (2012) Bioresour. Technol., 119, pp. 293-299Gouveia, E.R., Nascimento, R.T., Souto-Maior, A.M., Rocha, G.J.M., Avaliação de metodologia para a caracterização quÃmica do bagaço de cana-de-açúcar (2009) Quim. Nova, 32, pp. 1500-1503Grethlein, H.E., The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates (1985) Nat. Biotechnol., 3, pp. 155-160Gullon, B., Yanez, R., Alonso, J.L., Parajo, J.C., Production of oligosaccharides and sugars from rye straw: a kinetic approach (2010) Bioresour. Technol., 101, pp. 6676-6684Henrissat, B., Davies, G., Structural and sequence-based classification of glycoside hydrolases (1997) Curr. Opin. Struct. Biol., 7, pp. 637-644Huang, D., Ou, B., Prior, R.L., The chemistry behind antioxidant capacity assays (2005) J. Agric. Food Chem., 53, pp. 1841-1856Jayapal, N., Samanta, A.K., Kolte, A.P., Senani, S., Sridhar, M., Suresh, K.P., Sampath, K.T., Value addition to sugarcane bagasse: xylan extraction and its process optimization for xylooligosaccharides production (2013) Ind. Crops Prod., 42, pp. 14-24Koseki, T., Mimasaka, N., Hashizume, K., Shiono, Y., Murayama, T., Stimulatory effect of ferulic acid on the production of extracellular xylanolytic enzymes by Aspergillus kawachii (2007) Biosci. Biotechnol. Biochem., 71, pp. 1785-1787Loo, J.V., Cummings, J., Delzenne, N., Englyst, H., Franck, A., Hopkins, M., Kok, N., van den Heuvel, E., Functional food properties of nondigestible oligosaccharides: a consensus report from the ENDO Project (DGXII-AIRII-CT94-1095) (1999) Br. J. Nutr., 81, pp. 121-132Mandelli, F., Franco Cairo, J.P.L., Citadini, A.P.S., Büchli, F., Alvarez, T.M., Oliveira, R.J., Leite, V.B.P., Squina, F.M., The characterization of a thermostable and cambialistic superoxide dismutase from Thermus filiformis (2013) Lett. Appl. Microbiol., 57, pp. 40-46Miller, G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar (1959) Anal. Chem., 31, pp. 426-428Nabarlatz, D., Farriol, X., Montane, D., Autohydrolysis of almond shells for the production of xylooligosaccharides: product characteristics and reaction kinetics (2005) Ind. Eng. Chem. Res., 44, pp. 7746-7755Ou, B., Hampsch-Woodill, M., Prior, R.L., Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe (2001) J. Agric. Food Chem., 49, pp. 4619-4626Pandey, A., Soccol, C.R., Nigam, P., Brand, D., Mohan, R., Roussous, S., Biotechnological potential of coffee pulp and coffee husk for bioprocesses (2000) Biochem. Eng. J., 6, pp. 153-162Reddy, S.S., Krishnan, C., Production of prebiotics and antioxidants as health food supplements from lignocellulosic materials using multi enzymatic hydrolysis (2010) Int. J. Chem. Sci., 8, pp. S535-S549Rezende, C.A., de Lima, M.A., Maziero, P., de Azevedo, E.R., Garcia, W., Polikarpov, I., Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility (2011) Biotechnol. Biofuels, 54, pp. 1-18Rocha, G.J.M., Gonçalves, A.R., Oliveira, B.R., Olivares, E.G., Rossell, C.E.V., Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production (2012) Ind. Crops Prod., 35, pp. 274-279Rozzell, J.D., Commercial Scale biocatalysis: myths and realities (1999) Bioorg. Med. Chem., 7, pp. 2245-2261Singleton, V.L., Orthofer, R., Lamuela-Raventes, R.M., Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent (1999) Methods Enzymol., 299, pp. 152-178Sultana, B.B., Anwar, F., Asi, M.R., Chatha, S.A.S., Antioxidant potential of extracts from different agro wastes: stabilization of corn oil (2008) Grasas Aceites, 59, pp. 205-217Teng, C., Yan, Q., Jiang, Z., Fan, G., Shi, B., Production of xylooligosaccharides from the steam explosion liquor of corncobs coupled with enzymatic hydrolysis using a thermostable xylanase (2010) Bioresour. Technol., 101, pp. 7679-7682Toshio, I., Noriyoshi, I., Toshiaki, K., Toshiyuki, N., Kunimasa, K., (1990), Production of xylobiose. Japanese Patent JP 2119790Xu, F., Sun, R.C., Sun, J.X., Liu, C.F., He, B.H., Fan, J.S., Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse (2005) Anal. Chim. Acta, 552, pp. 207-217Yang, H., Wang, K., Song, X., Xu, F., Production of xylooligosaccharides by xylanase from Pichia stipitis based on xylan preparation from triploid Populas tomentosa (2011) Bioresour. Technol., 102, pp. 7171-7176Yoon, K.Y., Woodams, E.E., Hang, Y.D., Enzymatic production of pentoses from the hemicellulose fraction of corn residues (2006) LWT - Food Sci. Technol., 39, pp. 388-39