21,747 research outputs found

    Efficient atomic self-interaction correction scheme for non-equilibrium quantum transport

    Full text link
    Density functional theory calculations of electronic transport based on local exchange and correlation functionals contain self-interaction errors. These originate from the interaction of an electron with the potential generated by itself and may be significant in metal-molecule-metal junctions due to the localized nature of the molecular orbitals. As a consequence, insulating molecules in weak contact with metallic electrodes erroneously form highly conducting junctions, a failure similar to the inability of local functionals of describing Mott-Hubbard insulators. Here we present a fully self-consistent and still computationally undemanding self-interaction correction scheme that overcomes these limitations. The method is implemented in the Green's function non-equilibrium transport code Smeagol and applied to the prototypical cases of benzene molecules sandwiched between gold electrodes. The self-interaction corrected Kohn-Sham highest occupied molecular orbital now reproduces closely the negative of the molecular ionization potential and is moved away from the gold Fermi energy. This leads to a drastic reduction of the low bias current in much better agreement with experiments.Comment: 4 pages, 5 figure

    Using zeros of the canonical partition function map to detect signatures of a Berezinskii-Kosterlitz-Thouless transition

    Full text link
    Using the two dimensional XY−(S(O(3))XY-(S(O(3)) model as a test case, we show that analysis of the Fisher zeros of the canonical partition function can provide signatures of a transition in the Berezinskii-Kosterlitz-Thouless (BKTBKT) universality class. Studying the internal border of zeros in the complex temperature plane, we found a scenario in complete agreement with theoretical expectations which allow one to uniquely classify a phase transition as in the BKTBKT class of universality. We obtain TBKTT_{BKT} in excellent accordance with previous results. A careful analysis of the behavior of the zeros for both regions Re(T)≤TBKT\mathfrak{Re}(T) \leq T_{BKT} and Re(T)>TBKT\mathfrak{Re}(T) > T_{BKT} in the thermodynamic limit show that Im(T)\mathfrak{Im}(T) goes to zero in the former case and is finite in the last one

    DNA-psoralen: single-molecule experiments and first principles calculations

    Full text link
    The authors measure the persistence and contour lengths of DNA-psoralen complexes, as a function of psoralen concentration, for intercalated and crosslinked complexes. In both cases, the persistence length monotonically increases until a certain critical concentration is reached, above which it abruptly decreases and remains approximately constant. The contour length of the complexes exhibits no such discontinuous behavior. By fitting the relative increase of the contour length to the neighbor exclusion model, we obtain the exclusion number and the intrinsic intercalating constant of the psoralen-DNA interaction. Ab initio calculations are employed in order to provide an atomistic picture of these experimental findings.Comment: 9 pages, 4 figures in re-print format 3 pages, 4 figures in the published versio

    A BGG-type resolution for tensor modules over general linear superalgebra

    Full text link
    We construct a Bernstein-Gelfand-Gelfand type resolution in terms of direct sums of Kac modules for the finite-dimensional irreducible tensor representations of the general linear superalgebra. As a consequence it follows that the unique maximal submodule of a corresponding reducible Kac module is generated by its proper singular vector.Comment: 11pages, LaTeX forma

    Macroscopic Distinguishability Between Quantum States Defining Different Phases of Matter: Fidelity and the Uhlmann Geometric Phase

    Full text link
    We study the fidelity approach to quantum phase transitions (QPTs) and apply it to general thermal phase transitions (PTs). We analyze two particular cases: the Stoner-Hubbard itinerant electron model of magnetism and the BCS theory of superconductivity. In both cases we show that the sudden drop of the mixed state fidelity marks the line of the phase transition. We conduct a detailed analysis of the general case of systems given by mutually commuting Hamiltonians, where the non-analyticity of the fidelity is directly related to the non-analyticity of the relevant response functions (susceptibility and heat capacity), for the case of symmetry-breaking transitions. Further, on the case of BCS theory of superconductivity, given by mutually non-commuting Hamiltonians, we analyze the structure of the system's eigenvectors in the vicinity of the line of the phase transition showing that their sudden change is quantified by the emergence of a generically non-trivial Uhlmann mixed state geometric phase.Comment: 18 pages, 8 figures. Version to be publishe

    Bounds on topological Abelian string-vortex and string-cigar from information-entropic measure

    Get PDF
    In this work we obtain bounds on the topological Abelian string-vortex and on the string-cigar, by using a new measure of configurational complexity, known as configurational entropy. In this way, the information-theoretical measure of six-dimensional braneworlds scenarios are capable to probe situations where the parameters responsible for the brane thickness are arbitrary. The so-called configurational entropy (CE) selects the best value of the parameter in the model. This is accomplished by minimizing the CE, namely, by selecting the most appropriate parameters in the model that correspond to the most organized system, based upon the Shannon information theory. This information-theoretical measure of complexity provides a complementary perspective to situations where strictly energy-based arguments are inconclusive. We show that the higher the energy the higher the CE, what shows an important correlation between the energy of the a localized field configuration and its associated entropic measure.Comment: 6 pages, 7 figures, final version to appear in Phys. Lett.
    • …
    corecore