5,240 research outputs found
Versatile Electro-Dynamic Tethers Dynamics Simulator for Debris Mitigation Tools Design
As far as the space debris mitigation is concerned, the electro-dynamic tethers (EDTs) represent a valuable alternative for de-orbiting. The paper presents a high accuracy numerical simulator developed to support the design and verify the effectiveness of such systems: accurate models are exploited for the mechanical, electrodynamical and environmental representation. Results confirmed the known instabilities of EDTs; to cope with them a control strategy is here proposed, traded off among different laws. The selected control relies on varying either the load resistance or the cathodic emitter voltage drop, at the system cathode, being the current profile the controlled variable. The sensitivity analysis, run on several design parameters, is presented and the interdependencies with stability and performance are discussed
Conceptual study and manufacturing of a configurable and weld-free lattice base for automatic food machines
The study is aimed at developing a modular lattice base for automatic food machines, starting with a solution already patented by some of the authors. In this case, welded carpentry modules were interlocked with a system of profiles and metal inserts, also in welded carpentry, and the union was stabilized by structural adhesive bonding. Since welding involves long processing times and thermal distortions to be restored later, the driver of this study is to limit the use of welding as much as possible while increasing the modularity of the construction. For this purpose, various solution concepts have been generated where a common feature is the presence of rods of the same geometry and section to be joined together in configurable structural nodes. The concepts are qualitatively evaluated in light of the requirements, and the selected concept is digitally and physically prototyped. The prototype has been in service from over 5 years without showing any problems whatsoever
The Expanding Horizon of Neural Stimulation for Hyperkinetic Movement Disorders
Novel methods of neural stimulation are transforming the management of hyperkinetic movement disorders. In this review the diversity of approach available is showcased. We first describe the most commonly used features that can be extracted from oscillatory activity of the central nervous system, and how these can be combined with an expanding range of non-invasive and invasive brain stimulation techniques. We then shift our focus to the periphery using tremor and Tourette's syndrome to illustrate the utility of peripheral biomarkers and interventions. Finally, we discuss current innovations which are changing the landscape of stimulation strategy by integrating technological advances and the use of machine learning to drive optimization
Sensitivity of the spherical gravitational wave detector MiniGRAIL operating at 5 K
We present the performances and the strain sensitivity of the first spherical
gravitational wave detector equipped with a capacitive transducer and read out
by a low noise two-stage SQUID amplifier and operated at a temperature of 5 K.
We characterized the detector performance in terms of thermal and electrical
noise in the system output sygnal. We measured a peak strain sensitivity of
at 2942.9 Hz. A strain sensitivity of better than
has been obtained over a bandwidth of 30 Hz. We expect
an improvement of more than one order of magnitude when the detector will
operate at 50 mK. Our results represent the first step towards the development
of an ultracryogenic omnidirectional detector sensitive to gravitational
radiation in the 3kHz range.Comment: 8 pages, 5 figures, submitted to Physical Review
Footprints of element mobility during metasomatism linked to a late Miocene peraluminous granite intruding a carbonate host (Campiglia Marittima, Tuscany)
The Campiglia Marittima magmatic-hydrothermal system includes a peraluminous granite, its carbonatic host, and skarn. The system evolved generating a time-transgressive exchange of major and trace elements between granite, metasomatic fluids, and host rock. The process resulted in partial metasomatic replacement of the granite and severe replacement of the carbonate host rocks. The fluid activity started during a late-magmatic stage, followed by a potassic–calcic metasomatism, ending with a lower temperature acidic metasomatism. During the late-magmatic stage, B-rich residual fluids led to the formation of disseminated tourmaline–quartz orbicules. High-temperature metasomatic fluids generated a pervasive potassic–calcic metasomatism of the granite, with replacement of plagioclase, biotite, ilmenite, and apatite by K-feldspar, phlogopite–chlorite–titanite, titanite–rutile, and significant mobilization of Fe, Na, P, Ti, and minor HFSE/REE. The metasomatized granite is enriched in Mg, K, Rb, Ba, and Sr, and depleted in Fe and Na. Ca metasomatism is characterized by crystallization of a variety of calc-silicates, focusing along joints into the granite (endoskarn) and at the marble/pluton contact (exoskarn), and exchange of HFSE and LREE with hydrothermal fluids. Upon cooling, fluids became more acidic and fluorine activity increased, with widespread crystallization of fluorite from disequilibrium of former calc-silicates. At the pluton-host boundary, fluids were accumulated, and pH buffered to low values as temperature decreased, leading to the formation of a metasomatic front triggering the increasing mobilization of REE and HFSE and the late crystallization of REE–HFSE minerals
Campiglia Marittima Skarn (Tuscany): A Challenging Example for the Evolution of Skarn-Forming Models
Campiglia Marittima (hereafter Campiglia) has a long record of attracting interest on its ore deposits that have been intermittently exploited from the Copper Age to the late XX century. Since the XIX century, Campiglia has been a key locality for the debate on skarn-forming processes due to the presence of mining activities ensuring access to ever new rock exposures. The pioneering study of vom Rath and the comparison with attractive chemical model (e.g., Korzhinskii's theory) in the XX century made Campiglia a "classic" example of skarn ore deposit, from the causative intrusion to the marble host rock. In recent years, detailed field investigations integrated by petrographic, geochemical, and isotopic analyses revealed a more complex and stimulating geological history. The Campiglia skarn was later intruded by mafic magma causing textural reworking and chemical redistribution as well as the reverse telescoping process with Fe-Cu sulfides overprinting previously formed Pb-Zn ore. This work aims to trace the evolution of the scientific thinking on the Campiglia ore deposit by comparison with existing skarn-forming models and, ultimately, shows that the current skarn-forming model(s) cannot fully explain the textural and geochemical features of the Campiglia skarn
Tremor in motor neuron disease may be central rather than peripheral in origin
BACKGROUND AND PURPOSE:
Motor neuron disease (MND) refers to a spectrum of degenerative diseases affecting motor neurons. Recent clinical and post-mortem observations have revealed considerable variability in the phenotype. Rhythmic involuntary oscillations of the hands during action, resembling tremor, can occur in MND, but their pathophysiology has not yet been investigated.
METHODS:
A total of 120 consecutive patients with MND were screened for tremor. Twelve patients with action tremor and no other movement disorders were found. Ten took part in the study. Tremor was recorded bilaterally using surface electromyography (EMG) and triaxial accelerometer, with and without a variable weight load. Power spectra of rectified EMG and accelerometric signal were calculated. To investigate a possible cerebellar involvement, eyeblink classic conditioning was performed in five patients.
RESULTS:
Action tremor was present in about 10% of our population. All patients showed distal postural tremor of low amplitude and constant frequency, bilateral with a small degree of asymmetry. Two also showed simple kinetic tremor. A peak at the EMG and accelerometric recordings ranging from 4 to 12 Hz was found in all patients. Loading did not change peak frequency in either the electromyographic or accelerometric power spectra. Compared with healthy volunteers, patients had a smaller number of conditioned responses during eyeblink classic conditioning.
CONCLUSIONS:
Our data suggest that patients with MND can present with action tremor of a central origin, possibly due to a cerebellar dysfunction. This evidence supports the novel idea of MND as a multisystem neurodegenerative disease and that action tremor can be part of this condition
- …