4 research outputs found

    Inversion 2La is associated with enhanced desiccation resistance in Anopheles gambiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles gambiae</it>, the principal vector of malignant malaria in Africa, occupies a wide range of habitats. Environmental flexibility may be conferred by a number of chromosomal inversions non-randomly associated with aridity, including 2La. The purpose of this study was to determine the physiological mechanisms associated with the 2La inversion that may result in the preferential survival of its carriers in hygrically-stressful environments.</p> <p>Methods</p> <p>Two homokaryotypic populations of <it>A. gambiae </it>(inverted 2La and standard 2L+<sup>a</sup>) were created from a parental laboratory colony polymorphic for 2La and standard for all other known inversions. Desiccation resistance, water, energy and dry mass of adult females of both populations were compared at several ages and following acclimation to a more arid environment.</p> <p>Results</p> <p>Females carrying 2La were significantly more resistant to desiccation than 2L+<sup>a </sup>females at emergence and four days post-emergence, for different reasons. Teneral 2La females had lower rates of water loss than their 2L+<sup>a </sup>counterparts, while at four days, 2La females had higher initial water content. No differences in desiccation resistance were found at eight days, with or without acclimation. However, acclimation resulted in both populations significantly reducing their rates of water loss and increasing their desiccation resistance. Acclimation had contrasting effects on the body characteristics of the two populations: 2La females boosted their glycogen stores and decreased lipids, whereas 2La females did the contrary.</p> <p>Conclusion</p> <p>Variation in rates of water loss and response to acclimation are associated with alternative arrangements of the 2La inversion. Understanding the mechanisms underlying these traits will help explain how inversion polymorphisms permit exploitation of a heterogeneous environment by this disease vector.</p

    2La chromosomal inversion enhances thermal tolerance of Anopheles gambiae larvae

    Get PDF
    Background: The mosquito Anopheles gambiae is broadly distributed throughout sub-Saharan Africa and this contributes to making it the most efficient vector of malaria on the continent. The pervasiveness of this species is hypothesized to originate in local adaptations facilitated by inversion polymorphisms. One inversion, named 2La, is strongly associated with aridity clines in West and Central Africa: while 2La is fixed in arid savannas, the 2L(+a) arrangement is predominantly found in the rainforest. Ability to survive high temperature exposure is an essential component of aridity tolerance, particularly in immature stages that are restricted to shallow puddles. Toward deciphering the role of the 2La inversion in local adaptation, the present investigation focused on variation in larval and pupal thermo-tolerance in two populations dissimilar solely in 2La arrangement. Methods: A laboratory colony of A. gambiae that is polymorphic for 2La but standard for all other known inversions was used to create 2 homokaryotypic populations (2L(+a) and 2La). The survival of 4(th) instar larvae and pupae from both populations was then tested following exposure to thermal stress with and without prior heat hardening. Results: Larvae responded identically to a 40 degrees C heat stress, with about 50% of larvae dying after 1.5-2 h and few larvae surviving a 3 h stress. When heat hardened prior to the thermal stress, thermo-tolerance of both larval populations increased, with 2La 24 h survival significantly exceeding that of 2L(+a). Pupae were generally more thermo-tolerant than larvae, although 2La pupae were less so than 2L(+a). Heat hardening had no positive effect on pupal thermo-tolerance. Conclusion: The increased thermo-tolerance observed in 2La larvae following heat hardening suggests higher responsiveness (i.e., thermal sensitivity) of the inverted karyotype. By responding more drastically to the heat shock, 2La larvae are better equipped to resist the potentially lethal temperatures that occur in arid habitats. The lower survival of 2La pupae compared with 2L(+a) may reflect the cost of this sensitivity, whereby the thermal resistance mechanisms prevent successful completion of metamorphosis. The costs and benefits of thermal resistance are discussed in light of the climates characterizing either end of the 2La frequency cline

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases
    corecore