5 research outputs found
Distribution of varicella-zoster virus (VZV) wild-type genotypes in northern and southern Europe: Evidence for high conservation of circulating genotypes
AbstractPhylogenetic analysis of 19 complete VZV genomic sequences resolves wild-type strains into 5 genotypes (E1, E2, J, M1, and M2). Complete sequences for M3 and M4 strains are unavailable, but targeted analyses of representative strains suggest they are stable, circulating VZV genotypes. Sequence analysis of VZV isolates identified both shared and specific markers for every genotype and validated a unified VZV genotyping strategy. Despite high genotype diversity no evidence for intra-genotypic recombination was observed. Five of seven VZV genotypes were reliably discriminated using only four single nucleotide polymorphisms (SNP) present in ORF22, and the E1 and E2 genotypes were resolved using SNP located in ORF21, ORF22 or ORF50. Sequence analysis of 342 clinical varicella and zoster specimens from 18 European countries identified the following distribution of VZV genotypes: E1, 221 (65%); E2, 87 (25%); M1, 20 (6%); M2, 3 (1%); M4, 11 (3%). No M3 or J strains were observed
High genetic diversity of measles virus, World Health Organization European region, 2005-2006
During 2005-2006, nine measles virus (MV) genotypes were identified throughout the World Health Organization European Region. All major epidemics were associated with genotypes D4, D6, and B3. Other genotypes (B2, D5, D8, D9, G2, and H1) were only found in limited numbers of cases after importation from other continents. The genetic diversity of endemic D6 strains was low; genotypes C2 and D7, circulating in Europe until recent years, were no longer identified. The transmission chains of several indigenous MV strains may thus have been interrupted by enhanced vaccination. However, multiple importations from Africa and Asia and virus introduction into highly mobile and unvaccinated communities caused a massive spread of D4 and B3 strains throughout much of the region. Thus, despite the reduction of endemic MV circulation, importation of MV from other continents caused prolonged circulation and large outbreaks after their introduction into unvaccinated and highly mobile communities
Laboratory capability and surveillance testing for middle east respiratory syndrome coronavirus infection in the who European region, June 2013
Since September 2012, over 90 cases of respiratory disease caused by a novel coronavirus, now named Middle East respiratory syndrome coronavirus (MERS-CoV), have been reported in the Middle East and Europe. To ascertain the capabilities and testing experience of national reference laboratories across the World Health Organization (WHO) European Region to detect this virus, the European Centre for Disease Prevention and Control (ECDC) and the WHO Regional Office for Europe conducted a joint survey in November 2012 and a follow-up survey in June 2013. In 2013, 29 of 52 responding WHO European Region countries and 24 of 31 countries of the European Union/European Economic Area (EU/EEA) had laboratory capabilities to detect and confirm MERS-CoV cases, compared with 22 of 46 and 18 of 30 countries, respectively, in 2012. By June 2013, more than 2,300 patients had been tested in 23 countries in the WHO European Region with nine laboratory-confirmed MERS-CoV cases. These data indicate that the Region has developed significant capability to detect this emerging virus in accordance with WHO and ECDC guidance. However, not all countries had developed capabilities, and the needs to do so should be addressed. This includes enhancing collaborations between countries to ensure diagnostic capabilities for surveillance of MERS-CoV infections across the European Region