6,966 research outputs found

    Fluid-solid transition in hard hyper-sphere systems

    Full text link
    In this work we present a numerical study, based on molecular dynamics simulations, to estimate the freezing point of hard spheres and hypersphere systems in dimension D = 4, 5, 6 and 7. We have studied the changes of the Radial Distribution Function (RDF) as a function of density in the coexistence region. We started our simulations from crystalline states with densities above the melting point, and moved down to densities in the liquid state below the freezing point. For all the examined dimensions (including D = 3) it was observed that the height of the first minimum of the RDF changes in an almost continuous way around the freezing density and resembles a second order phase transition. With these results we propose a numerical method to estimate the freezing point as a function of the dimension D using numerical fits and semiempirical approaches. We find that the estimated values of the freezing point are very close to previously reported values from simulations and theoretical approaches up to D = 6 reinforcing the validity of the proposed method. This was also applied to numerical simulations for D = 7 giving new estimations of the freezing point for this dimensionality.Comment: 13 pages, 10 figure

    On the liquid-glass transition line in monatomic Lennard-Jones fluids

    Full text link
    A thermodynamic approach to derive the liquid-glass transition line in the reduced temperature vs reduced density plane for a monatomic Lennard-Jones fluid is presented. The approach makes use of a recent reformulation of the classical perturbation theory of liquids [M. Robles and M. L\'opez de Haro, Phys. Chem. Chem. Phys. {\bf 3}, 5528 (2001)] which is at grips with a rational function approximation for the Laplace transform of the radial distribution function of the hard-sphere fluid. The only input required is an equation of state for the hard-sphere system. Within the Mansoori-Canfield/Rasaiah-Stell variational perturbation theory, two choices for such an equation of state, leading to a glass transition for the hard-sphere fluid, are considered. Good agreement with the liquid-glass transition line derived from recent molecular dynamic simulations [Di Leonardo et al., Phys. Rev. Lett. {\bf 84}, 6054(2000)] is obtained.Comment: 4 pages, 2 figure

    The Einstein-Boltzmann Relation for Thermodynamic and Hydrodynamic Fluctuations

    Full text link
    When making the connection between the thermodynamics of irreversible processes and the theory of stochastic processes through the fluctuation-dissipation theorem, it is necessary to invoke a postulate of the Einstein-Boltzmann type. For convective processes hydrodynamic fluctuations must be included, the velocity is a dynamical variable and although the entropy cannot depend directly on the velocity, δ2S\delta^{2} S will depend on velocity variations. Some authors do not include velocity variations in δ2S\delta^{2} S, and so have to introduce a non-thermodynamic function which replaces the entropy and does depend on the velocity. At first sight, it seems that the introduction of such a function requires a generalisation of the Einstein-Boltzmann relation to be invoked. We review the reason why it is not necessary to introduce such a function, and therefore why there is no need to generalise the Einstein-Boltzmann relation in this way. We then obtain the fluctuation-dissipation theorem which shows some differences as compared with the non-convective case. We also show that δ2S\delta^{2} S is a Liapunov function when it includes velocity fluctuations.Comment: 13 Page

    Dual contribution to amplification in the mammalian inner ear

    Full text link
    The inner ear achieves a wide dynamic range of responsiveness by mechanically amplifying weak sounds. The enormous mechanical gain reported for the mammalian cochlea, which exceeds a factor of 4,000, poses a challenge for theory. Here we show how such a large gain can result from an interaction between amplification by low-gain hair bundles and a pressure wave: hair bundles can amplify both their displacement per locally applied pressure and the pressure wave itself. A recently proposed ratchet mechanism, in which hair-bundle forces do not feed back on the pressure wave, delineates the two effects. Our analytical calculations with a WKB approximation agree with numerical solutions.Comment: 4 pages, 4 figure

    Reducing the fine-tuning of gauge-mediated SUSY breaking

    Get PDF
    Despite their appealing features, models with gauge-mediated supersymmetry breaking (GMSB) typically present a high degree of fine-tuning, due to the initial absence of the top trilinear scalar couplings, At=0A_t=0. In this paper, we carefully evaluate such a tuning, showing that is worse than per mil in the minimal model. Then, we examine some existing proposals to generate At≠0A_t\neq 0 term in this context. We find that, although the stops can be made lighter, usually the tuning does not improve (it may be even worse), with some exceptions, which involve the generation of AtA_t at one loop or tree level. We examine both possibilities and propose a conceptually simplified version of the latter; which is arguably the optimum GMSB setup (with minimal matter content), concerning the fine-tuning issue. The resulting fine-tuning is better than one per mil, still severe but similar to other minimal supersymmetric standard model constructions. We also explore the so-called "little At2/m2A_t^2/m^2 problem", i.e. the fact that a large AtA_t-term is normally accompanied by a similar or larger sfermion mass, which typically implies an increase in the fine-tuning. Finally, we find the version of GMSB for which this ratio is optimized, which, nevertheless, does not minimize the fine-tuning.Comment: 16 pages, 11 figures, 1 appendix. Discussion extended, matches EPJC published versio
    • …
    corecore