1,306 research outputs found

    Cluster radioactivity of Th isotopes in the mean-field HFB theory

    Full text link
    Cluster radioactivity is described as a very mass asymmetric fission process. The reflection symmetry breaking octupole moment has been used in a mean field HFB theory as leading coordinate instead of the quadrupole moment usually used in standard fission calculations. The procedure has been applied to the study of the ``very mass asymmetric fission barrier'' of several even-even Thorium isotopes. The masses of the emitted clusters as well as the corresponding half-lives have been evaluated on those cases where experimental data exist.Comment: Contribution to XIV Nuclear Physics Workshop at Kazimierz Dolny, Poland, Sept. 26-29, 200

    Microscopic description of fission in neutron-rich plutonium isotopes with the Gogny-D1M energy density functional

    Full text link
    The most recent parametrization D1M of the Gogny energy density functional is used to describe fission in the isotopes 232−280^{232-280} Pu. We resort to the methodology introduced in our previous studies [Phys. Rev. C \textbf{88}, 054325 (2013) and Phys. Rev. C \textbf {89}, 054310 (2014)] to compute the fission paths, collective masses and zero point quantum corrections within the Hartree-Fock-Bogoliubov framework. The systematics of the spontaneous fission half-lives tSF_{SF}, masses and charges of the fragments in Plutonium isotopes is analyzed and compared with available experimental data. We also pay attention to isomeric states, the deformation properties of the fragments as well as to the competition between the spontaneous fission and α\alpha-decay modes. The impact of pairing correlations on the predicted tSF_{SF} values is demonstrated with the help of calculations for 232−280^{232-280}Pu in which the pairing strengths of the Gogny-D1M energy density functional are modified by 5 %\% and 10 %\%, respectively. We further validate the use of the D1M parametrization through the discussion of the half-lives in 242−262^{242-262}Fm. Our calculations corroborate that, though the uncertainties in the absolute values of physical observables are large, the Gogny-D1M Hartree-Fock-Bogoliubov framework still reproduces the trends with mass and/or neutron numbers and therefore represents a reasonable starting point to describe fission in heavy nuclear systems from a microscopic point of view.Comment: 14 pages, 11 figures. arXiv admin note: text overlap with arXiv:1312.722

    Microscopic description of fission in Uranium isotopes with the Gogny energy density functional

    Full text link
    The most recent parametrizations D1S, D1N and D1M of the Gogny energy density functional are used to describe fission in the isotopes 232−280^{232-280} U. Fission paths, collective masses and zero point quantum corrections, obtained within the constrained Hartree-Fock-Bogoliubov approximation, are used to compute the systematics of the spontaneous fission half-lives tSFt_\mathrm{SF}, the masses and charges of the fission fragments as well as their intrinsic shapes. The Gogny-D1M parametrization has been benchmarked against available experimental data on inner and second barrier heights, excitation energies of the fission isomers and half-lives in a selected set of Pu, Cm, Cf, Fm, No, Rf, Sg, Hs and Fl nuclei. It is concluded that D1M represents a reasonable starting point to describe fission in heavy and superheavy nuclei. Special attention is also paid to understand the uncertainties in the predicted tSFt_\mathrm{SF} values arising from the different building blocks entering the standard semi-classical Wentzel-Kramers-Brillouin formula. Although the uncertainties are large, the trend with mass or neutron numbers are well reproduced and therefore the theory still has predictive power. In this respect, it is also shown that modifications of a few per cent in the pairing strength can have a significant impact on the collective masses leading to uncertainties in the tSFt_\mathrm{SF} values of several orders of magnitude.Comment: 22 pages, 17 figures; Minor modifications to previous versio

    A variational approach to approximate particle number projection with effective forces

    Full text link
    Kamlah's second order method for approximate particle number projection is applied for the first time to variational calculations with effective forces. High spin states of normal and superdeformed nuclei have been calculated with the finite range density dependent Gogny force for several nuclei. Advantages and drawbacks of the Kamlah second order method as compared to the Lipkin-Nogami recipe are thoroughly discussed. We find that the Lipkin-Nogami prescription occasionally may fail to find the right energy minimum in the strong pairing regime and that Kamlah's second order approach, though providing better results than the LN one, may break down in some limiting situations.Comment: 16 pages, 8 figure
    • …
    corecore