219 research outputs found

    Correlation between nucleotide composition and folding energy of coding sequences with special attention to wobble bases

    Get PDF
    Background: The secondary structure and complexity of mRNA influences its accessibility to regulatory molecules (proteins, micro-RNAs), its stability and its level of expression. The mobile elements of the RNA sequence, the wobble bases, are expected to regulate the formation of structures encompassing coding sequences. Results: The sequence/folding energy (FE) relationship was studied by statistical, bioinformatic methods in 90 CDS containing 26,370 codons. I found that the FE (dG) associated with coding sequences is significant and negative (407 kcal/1000 bases, mean +/- S.E.M.) indicating that these sequences are able to form structures. However, the FE has only a small free component, less than 10% of the total. The contribution of the 1st and 3rd codon bases to the FE is larger than the contribution of the 2nd (central) bases. It is possible to achieve a ~ 4-fold change in FE by altering the wobble bases in synonymous codons. The sequence/FE relationship can be described with a simple algorithm, and the total FE can be predicted solely from the sequence composition of the nucleic acid. The contributions of different synonymous codons to the FE are additive and one codon cannot replace another. The accumulated contributions of synonymous codons of an amino acid to the total folding energy of an mRNA is strongly correlated to the relative amount of that amino acid in the translated protein. Conclusion: Synonymous codons are not interchangable with regard to their role in determining the mRNA FE and the relative amounts of amino acids in the translated protein, even if they are indistinguishable in respect of amino acid coding.Comment: 14 pages including 6 figures and 1 tabl

    Pre-Exposure to 50 Hz Magnetic Fields Modifies Menadione-Induced Genotoxic Effects in Human SH-SY5Y Neuroblastoma Cells

    Get PDF
    BACKGROUND: Extremely low frequency (ELF) magnetic fields (MF) are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to ELF MF altered cancer-relevant cellular responses (cell cycle arrest, apoptosis) to menadione-induced DNA damage, but it did not include endpoints measuring actual genetic damage. In the present study, we examined whether pre-exposure to ELF MF affects chemically induced DNA damage level, DNA repair rate, or micronucleus frequency in human SH-SY5Y neuroblastoma cells. METHODOLOGY/PRINCIPAL FINDINGS: Exposure to 50 Hz MF was conducted at 100 µT for 24 hours, followed by chemical exposure for 3 hours. The chemicals used for inducing DNA damage and subsequent micronucleus formation were menadione and methyl methanesulphonate (MMS). Pre-treatment with MF enhanced menadione-induced DNA damage, DNA repair rate, and micronucleus formation in human SH-SY5Y neuroblastoma cells. Although the results with MMS indicated similar effects, the differences were not statistically significant. No effects were observed after MF exposure alone. CONCLUSIONS: The results confirm our previous findings showing that pre-exposure to MFs as low as 100 µT alters cellular responses to menadione, and show that increased genotoxicity results from such interaction. The present findings also indicate that complementary data at several chronological points may be critical for understanding the MF effects on DNA damage, repair, and post-repair integrity of the genome

    Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors

    Get PDF
    Chronic exposure to drugs of abuse or stress regulates transcription factors, chromatin-modifying enzymes and histone post-translational modifications in discrete brain regions. Given the promiscuity of the enzymes involved, it has not yet been possible to obtain direct causal evidence to implicate the regulation of transcription and consequent behavioral plasticity by chromatin remodeling that occurs at a single gene. We investigated the mechanism linking chromatin dynamics to neurobiological phenomena by applying engineered transcription factors to selectively modify chromatin at a specific mouse gene in vivo. We found that histone methylation or acetylation at the Fosb locus in nucleus accumbens, a brain reward region, was sufficient to control drug- and stress-evoked transcriptional and behavioral responses via interactions with the endogenous transcriptional machinery. This approach allowed us to relate the epigenetic landscape at a given gene directly to regulation of its expression and to its subsequent effects on reward behavior

    Plated Cambrian Bilaterians Reveal the Earliest Stages of Echinoderm Evolution

    Get PDF
    Echinoderms are unique in being pentaradiate, having diverged from the ancestral bilaterian body plan more radically than any other animal phylum. This transformation arises during ontogeny, as echinoderm larvae are initially bilateral, then pass through an asymmetric phase, before giving rise to the pentaradiate adult. Many fossil echinoderms are radial and a few are asymmetric, but until now none have been described that show the original bilaterian stage in echinoderm evolution. Here we report new fossils from the early middle Cambrian of southern Europe that are the first echinoderms with a fully bilaterian body plan as adults. Morphologically they are intermediate between two of the most basal classes, the Ctenocystoidea and Cincta. This provides a root for all echinoderms and confirms that the earliest members were deposit feeders not suspension feeders

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Exome Sequencing Reveals Comprehensive Genomic Alterations across Eight Cancer Cell Lines

    Get PDF
    It is well established that genomic alterations play an essential role in oncogenesis, disease progression, and response of tumors to therapeutic intervention. The advances of next-generation sequencing technologies (NGS) provide unprecedented capabilities to scan genomes for changes such as mutations, deletions, and alterations of chromosomal copy number. However, the cost of full-genome sequencing still prevents the routine application of NGS in many areas. Capturing and sequencing the coding exons of genes (the “exome”) can be a cost-effective approach for identifying changes that result in alteration of protein sequences. We applied an exome-sequencing technology (Roche Nimblegen capture paired with 454 sequencing) to identify sequence variation and mutations in eight commonly used cancer cell lines from a variety of tissue origins (A2780, A549, Colo205, GTL16, NCI-H661, MDA-MB468, PC3, and RD). We showed that this technology can accurately identify sequence variation, providing ∼95% concordance with Affymetrix SNP Array 6.0 performed on the same cell lines. Furthermore, we detected 19 of the 21 mutations reported in Sanger COSMIC database for these cell lines. We identified an average of 2,779 potential novel sequence variations/mutations per cell line, of which 1,904 were non-synonymous. Many non-synonymous changes were identified in kinases and known cancer-related genes. In addition we confirmed that the read-depth of exome sequence data can be used to estimate high-level gene amplifications and identify homologous deletions. In summary, we demonstrate that exome sequencing can be a reliable and cost-effective way for identifying alterations in cancer genomes, and we have generated a comprehensive catalogue of genomic alterations in coding regions of eight cancer cell lines. These findings could provide important insights into cancer pathways and mechanisms of resistance to anti-cancer therapies

    Co-morbidity and patterns of care in stimulant-treated children with ADHD in the Netherlands

    Get PDF
    This study aimed at investigating the use of psychosocial interventions and psychotropic co-medication among stimulant-treated children with attention-deficit hyperactivity disorder (ADHD) in relation to the presence of psychiatric co-morbidity. Stimulant users younger than 16 years were identified in 115 pharmacies and a questionnaire was sent to their stimulant prescribing physician. Of 773 questionnaires sent out, 556 were returned and were suitable for analysis (72%). The results are based on 510 questionnaires concerning stimulant-treated children for whom a diagnosis of ADHD was reported. Of the 510 children diagnosed with ADHD, 31% had also received one or more other psychiatric diagnoses, mainly pervasive developmental disorder or oppositional defiant disorder/conduct disorder. We found an association between the presence of co-morbidity and the use of psychosocial interventions for the child (P < 0.001) and the parents (P < 0.001). In the ADHD-only group, 26% did not receive any form of additional interventions, while psychosocial interventions varied from 8 to 18% in children with ADHD and psychiatric co-morbidity. The presence of diagnostic co-morbidity was also associated with the use of psychotropic co-medication (overall, P = 0.012) and antipsychotics (P < 0.001). Stimulant-treated youths with ADHD and psychiatric co-morbidity received more psychosocial interventions and psychotropic co-medication than children with ADHD-only. The type of psychosocial interventions and psychotropic co-medication received by the children and their parents, depended on the specific co-morbid psychiatric disorder being present

    Does switching from oral extended-release methylphenidate to the methylphenidate transdermal system affect health-related quality-of-life and medication satisfaction for children with attention-deficit/hyperactivity disorder?

    Get PDF
    Background: To evaluate health-related quality of life (HRQL) and medication satisfaction after switching from a stable dose of oral extended-release methylphenidate (ER-MPH) to methylphenidate transdermal system (MTS) via a dose-transition schedule in children with attention-deficit/hyperactivity disorder (ADHD). Methods: In a 4-week, multisite, open-label study, 171 children (164 in the intent-to-treat [ITT] population) aged 6-12 years diagnosed with ADHD abruptly switched from a stable dose of oral ER-MPH to MTS nominal dosages of 10, 15, 20, and 30 mg using a predefined dose-transition schedule. Subjects remained on the scheduled dose for the first week, after which the dose was then titrated to an optimal effect. The ADHD Impact Module-Children (AIM-C), a disease-specific validated HRQL survey instrument measuring child and family impact, was used to assess the impact of ADHD symptoms on the lives of children and their families at baseline and study endpoint. Satisfaction with MTS use was assessed via a Medication Satisfaction Survey (MSS) at study endpoint. Both the AIM-C and MSS were completed by a caregiver (parent/legally authorized representative). Tolerability was monitored by spontaneous adverse event (AE) reporting. Results: AIM-C child and family HRQL mean scores were above the median possible score at baseline and were further improved at endpoint across all MTS doses. Similar improvements were noted for behavior, missed doses, worry, and economic impact AIM-C item scores. Overall, 93.8% of caregivers indicated a high level of satisfaction with their child's use of the study medication. The majority of treatment-emergent AEs (> 98%) were mild to moderate in intensity, and the most commonly reported AEs included headache, decreased appetite, insomnia, and abdominal pain. Seven subjects discontinued the study due to intolerable AEs (n = 3) and application site reactions (n = 4). Conclusion: This study demonstrates that MTS, when carefully titrated to optimal dose, may further improve child and family HRQL, as well as behavioral, medication worry, and economic impact item scores, as measured by the AIM-C in subjects switching to MTS from a stable dose of routinely prescribed oral ER-MPH after a short treatment period. Furthermore, following the abrupt conversion from oral ER-MPH to MTS, the majority of caregivers reported being highly satisfied with MTS as a treatment option for their children with ADHD. Trial Registration: NCT0015198
    corecore