729 research outputs found

    Effect of Successive Single-gestation Pregnancies on the Course of Maternal Human Immunodeficiency Virus Disease and Perinatal Transmission

    Get PDF
    Objective: This study was undertaken to examine the effect of successive pregnancies over a 3-year period on the course of maternal human immunodeficiency virus (HIV) infection and the rate of perinatal transmission of HIV

    Crystalline optical cavity at 4 K with thermal noise limited instability and ultralow drift

    Get PDF
    Crystalline optical cavities are the foundation of today's state-of-the-art ultrastable lasers. Building on our previous silicon cavity effort, we now achieve the fundamental thermal noise-limited stability for a 6 cm long silicon cavity cooled to 4 Kelvin, reaching 6.5×10−176.5\times10^{-17} from 0.8 to 80 seconds. We also report for the first time a clear linear dependence of the cavity frequency drift on the incident optical power. The lowest fractional frequency drift of −3×10−19-3\times10^{-19}/s is attained at a transmitted power of 40 nW, with an extrapolated drift approaching zero in the absence of optical power. These demonstrations provide a promising direction to reach a new performance domain for stable lasers, with stability better than 1×10−171\times10^{-17} and fractional linear drift below 1×10−191\times10^{-19}/s

    A Review of Drive Cycles for Electrochemical Propulsion

    Get PDF
    Automotive drive cycles have existed since the 1960s. They started as requirements as being solely used for emissions testing. During the past decade, they became popular with scientists and researchers in the testing of electrochemical vehicles and power devices. They help simulate realistic driving scenarios anywhere from system to component-level design. This paper aims to discuss the complete history of these drive cycles and their validity when used in an electrochemical propulsion scenario, namely with the use of proton exchange membrane fuel cells (PEMFC) and lithium-ion batteries. The differences between two categories of drive cycles, modal and transient, were compared; and further discussion was provided on why electrochemical vehicles need to be designed and engineered with transient drive cycles instead of modal. Road-going passenger vehicles are the main focus of this piece. Similarities and differences between aviation and marine drive cycles are briefly mentioned and compared and contrasted with road cycles. The construction of drive cycles and how they can be transformed into a ‘power cycle’ for electrochemical device sizing purposes for electrochemical vehicles are outlined; in addition, how one can use power cycles to size electrochemical vehicles of various vehicle architectures are suggested, with detailed explanations and comparisons of these architectures. A concern with using conventional drive cycles for electrochemical vehicles is that these types of vehicles behave differently compared to combustion-powered vehicles, due to the use of electrical motors rather than internal combustion engines, causing different vehicle behaviours and dynamics. The challenges, concerns, and validity of utilising ‘general use’ drive cycles for electrochemical purposes are discussed and critiqued

    Tracking the Lifecycle of a 21700 Cell: A 4D Tomography and Digital Disassembly Study

    Get PDF
    Extending the lifetime of commercial Li-ion cells is among the most important challenges to facilitate the continued electrification of transport as demonstrated by the substantial volume of literature dedicated to identifying degradation mechanisms in batteries. Here, we conduct a long-term study on a cylindrical Li-ion cell, tracking the evolution of the structure of the cell using X-ray computed tomography. By evaluating the internal geometry of the cell over several hundreds of cycles we show a causal relationship between changes in the electrode structure and the capacity fade associated with cell aging. The rapid aging which occurs as cells reach their end-of-life condition is mirrored in a significant acceleration in internal architecture changes. This work also shows the importance of consistent and accurate manufacturing processes with small defects in the jelly-roll being shown to act as nucleation sites for the structural degradation and by extension capacity fade

    Lithium-sulfur battery diagnostics through distribution of relaxation times analysis

    Get PDF
    Electrochemical impedance spectroscopy (EIS) is widely used in battery analysis as it is simple to implement and non-destructive. However, the data provided is a global representation of all electrochemical processes within the cell and much useful information is ambiguous or inaccessible when using traditional analysis techniques. This is a major challenge when EIS is used to analyse systems with complex cell chemistries, like lithium-sulfur (Li-S), one of the strongest candidates to supersede conventional Li-ion batteries. Here we demonstrate the application of distribution of relaxation times (DRT) analysis for quantitative deconvolution of EIS spectra from Li-S batteries, revealing the contributions of (eight) distinct electrode processes to the total cell polarisation. The DRT profile is shown to be strongly dependent on cell state-of-charge, offering a route to automated and on-board analysis of Li-S cells

    Operando ultrasonic monitoring of the internal temperature of lithium-ion batteries for the detection and prevention of thermal runaway

    Get PDF
    Lithium-ion batteries (LIBs) play an integral role in powering various applications, from consumer electronics to stationary storage, and notably in the accelerating domain of electric vehicles (EVs). Despite their widespread adoption and numerous benefits, safety issues are of major concern, especially with the surge in their utilization and increasing proliferation of second-life cells, particularly in domestic energy storage applications. A critical concern revolves around susceptibility to thermal runaway, leading to highly hazardous and challenging-to-contain fires. Addressing these concerns necessitates effective methods to monitor internal temperature dynamics within lithium-ion cells swiftly and cost-effectively, alongside a need to develop prognostic techniques to pre-empt thermal runaway occurrences. This study presents an innovative approach that uses ultrasound analysis to track intricate internal temperature fluctuations and gradients within cells. Moreover, an efficient multi-stage warning system is proposed that is designed to proactively prevent thermal runaway events. The findings offer promising avenues for enhancing the safety and reliability of lithium-ion battery systems

    Deploying Proteins as Electrolyte Additives in Li–S Batteries: The Multifunctional Role of Fibroin in Improving Cell Performance

    Get PDF
    It is widely accepted that the commercial application of lithium–sulfur batteries is inhibited by their short cycle life, which is primarily caused by a combination of Li dendrite formation and active material loss due to polysulfide shuttling. Unfortunately, while numerous approaches to overcome these problems have been reported, most are unscalable and hence further hinder Li–S battery commercialization. Most approaches suggested also only tackle one of the primary mechanisms of cell degradation and failure. Here, we demonstrate that the use of a simple protein, fibroin, as an electrolyte additive can both prevent Li dendrite formation and minimize active material loss to enable high capacity and long cycle life (up to 500 cycles) in Li–S batteries, without inhibiting the rate performance of the cell. Through a combination of experiments and molecular dynamics (MD) simulations, it is demonstrated that the fibroin plays a dual role, both binding to polysulfides to hinder their transport from the cathode and passivating the Li anode to minimize dendrite nucleation and growth. Most importantly, as fibroin is inexpensive and can be simply introduced to the cell via the electrolyte, this work offers a route toward practical industrial applications of a viable Li–S battery system

    Crystalline optical cavity at 4 K with thermal-noise-limited instability and ultralow drift

    Get PDF
    Crystalline optical cavities are the foundation of today’s state-of-the-art ultrastable lasers. Building on our previous silicon cavity effort, we now achieve the fundamental thermal-noise-limited stability for a 6 cm long silicon cavity cooled to 4 K, reaching 6.5×10−17 from 0.8 s to 80 s. We also report for the first time, to the best of our knowledge, a clear linear dependence of the cavity frequency drift on incident optical power. The lowest fractional frequency drift of −3×10−19/s is attained at a transmitted power of 40 nW, with an extrapolated drift approaching zero in the absence of optical power. These demonstrations provide a promising direction to reach a new performance domain for stable lasers, with stability better than 1×10−17 and fractional linear drift below 1×10−19/s

    PEMFC Electrochemical Degradation Analysis of a Fuel Cell Range-Extender (FCREx) Heavy Goods Vehicle after a Break-In Period

    Get PDF
    With the increasing focus on decarbonisation of the transport sector, it is imperative to consider routes to electrify vehicles beyond those achievable using lithium-ion battery technology. These include heavy goods vehicles and aerospace applications that require propulsion systems that can provide gravimetric energy densities, which are more likely to be delivered by fuel cell systems. While the discussion of light-duty vehicles is abundant in the literature, heavy goods vehicles are under-represented. This paper presents an overview of the electrochemical degradation of a proton exchange membrane fuel cell integrated into a simulated Class 8 heavy goods range-extender fuel cell hybrid electric vehicle operating in urban driving conditions. Electrochemical degradation data such as polarisation curves, cyclic voltammetry values, linear sweep voltammetry values, and electrochemical impedance spectroscopy values were collected and analysed to understand the expected degradation modes in this application. In this application, the proton exchange membrane fuel cell stack power was designed to remain constant to fulfil the mission requirements, with dynamic and peak power demands managed by lithium-ion batteries, which were incorporated into the hybridised powertrain. A single fuel cell or battery cell can either be operated at maximum or nominal power demand, allowing four operational scenarios: maximum fuel cell maximum battery, maximum fuel cell nominal battery, nominal fuel cell maximum battery, and nominal fuel cell nominal battery. Operating scenarios with maximum fuel cell operating power experienced more severe degradation after endurance testing than nominal operating power. A comparison of electrochemical degradation between these operating scenarios was analysed and discussed. By exploring the degradation effects in proton exchange membrane fuel cells, this paper offers insights that will be useful in improving the long-term performance and durability of proton exchange membrane fuel cells in heavy-duty vehicle applications and the design of hybridised powertrains

    Marek\u27s Disease Virus (MDV) Encodes an Interleukin-8 Homolog (vIL-8): Characterization of the vIL-8 Protein and a vIL-8 Deletion Mutant MDV

    Get PDF
    Chemokines induce chemotaxis, cell migration, and inflammatory responses. We report the identification of an interleukin-8 (IL-8) homolog, termed vIL-8, encoded within the genome of Marek\u27s disease virus (MDV). The 134-amino-acid vIL-8 shares closest homology to mammalian and avian IL-8, molecules representing the prototype CXC chemokine. The gene for vIL-8 consists of three exons which map to the BamHI-L fragment within the repeats flanking the unique long region of the MDV genome. A 0.7-kb transcript encoding vIL-8 was detected in an n-butyrate-treated, MDV-transformed T-lymphoblastoid cell line, MSB-1. This induction is essentially abolished by cycloheximide and herpesvirus DNA polymerase inhibitor phosphonoacetate, indicating that vIL-8 is expressed with true late (gamma2) kinetics. Baculovirus-expressed vIL-8 was found to be secreted into the medium and shown to be functional as a chemoattractant for chicken peripheral blood mononuclear cells but not for heterophils. To characterize the function of vIL-8 with respect to MDV infection in vivo, a recombinant MDV was constructed with a deletion of all three exons and a soluble-modified green fluorescent protein (smGFP) expression cassette inserted at the site of deletion. In two in vivo experiments, the vIL-8 deletion mutant (RB1BvIL-8DeltasmGFP) showed a decreased level of lytic infection in comparison to its parent virus, an equal-passage-level parent virus, and to another recombinant MDV containing the insertion of a GFP expression cassette at the nonessential US2 gene. RB1BvIL-8DeltasmGFP retained oncogenicity, albeit at a greatly reduced level. Nonetheless, we have been able to establish a lymphoblastoid cell line from an RB1BvIL-8DeltasmGFP-induced ovarian lymphoma (MDCC-UA20) and verify the presence of a latent MDV genome lacking vIL-8. Taken together, these data describe the identification and characterization of a chemokine homolog encoded within the MDV genome that is dispensable for transformation but may affect the level of MDV in vivo lytic infection
    • …
    corecore