6,976 research outputs found
Estimating the causal effect of a time-varying treatment on time-to-event using structural nested failure time models
In this paper we review an approach to estimating the causal effect of a
time-varying treatment on time to some event of interest. This approach is
designed for the situation where the treatment may have been repeatedly adapted
to patient characteristics, which themselves may also be time-dependent. In
this situation the effect of the treatment cannot simply be estimated by
conditioning on the patient characteristics, as these may themselves be
indicators of the treatment effect. This so-called time-dependent confounding
is typical in observational studies. We discuss a new class of failure time
models, structural nested failure time models, which can be used to estimate
the causal effect of a time-varying treatment, and present methods for
estimating and testing the parameters of these models
Betti number signatures of homogeneous Poisson point processes
The Betti numbers are fundamental topological quantities that describe the
k-dimensional connectivity of an object: B_0 is the number of connected
components and B_k effectively counts the number of k-dimensional holes.
Although they are appealing natural descriptors of shape, the higher-order
Betti numbers are more difficult to compute than other measures and so have not
previously been studied per se in the context of stochastic geometry or
statistical physics.
As a mathematically tractable model, we consider the expected Betti numbers
per unit volume of Poisson-centred spheres with radius alpha. We present
results from simulations and derive analytic expressions for the low intensity,
small radius limits of Betti numbers in one, two, and three dimensions. The
algorithms and analysis depend on alpha-shapes, a construction from
computational geometry that deserves to be more widely known in the physics
community.Comment: Submitted to PRE. 11 pages, 10 figure
Pulsed pumping of a Bose-Einstein condensate
In this work, we examine a system for coherent transfer of atoms into a
Bose-Einstein condensate. We utilize two spatially separate Bose-Einstein
condensates in different hyperfine ground states held in the same dc magnetic
trap. By means of a pulsed transfer of atoms, we are able to show a clear
resonance in the timing of the transfer, both in temperature and number, from
which we draw conclusions about the underlying physical process. The results
are discussed in the context of the recently demonstrated pumped atom laser.Comment: 5 pages, 5 figures, published in Physical Review
Rb-85 tunable-interaction Bose-Einstein condensate machine
We describe our experimental setup for creating stable Bose-Einstein
condensates of Rb-85 with tunable interparticle interactions. We use
sympathetic cooling with Rb-87 in two stages, initially in a tight
Ioffe-Pritchard magnetic trap and subsequently in a weak, large-volume crossed
optical dipole trap, using the 155 G Feshbach resonance to manipulate the
elastic and inelastic scattering properties of the Rb-85 atoms. Typical Rb-85
condensates contain 4 x 10^4 atoms with a scattering length of a=+200a_0. Our
minimalist apparatus is well-suited to experiments on dual-species and spinor
Rb condensates, and has several simplifications over the Rb-85 BEC machine at
JILA (Papp, 2007; Papp and Wieman, 2006), which we discuss at the end of this
article.Comment: 10 pages, 8 figure
Tactile Interactions with a Humanoid Robot : Novel Play Scenario Implementations with Children with Autism
Acknowledgments: This work has been partially supported by the European Commission under contract number FP7-231500-ROBOSKIN. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.The work presented in this paper was part of our investigation in the ROBOSKIN project. The project has developed new robot capabilities based on the tactile feedback provided by novel robotic skin, with the aim to provide cognitive mechanisms to improve human-robot interaction capabilities. This article presents two novel tactile play scenarios developed for robot-assisted play for children with autism. The play scenarios were developed against specific educational and therapeutic objectives that were discussed with teachers and therapists. These objectives were classified with reference to the ICF-CY, the International Classification of Functioning – version for Children and Youth. The article presents a detailed description of the play scenarios, and case study examples of their implementation in HRI studies with children with autism and the humanoid robot KASPAR.Peer reviewedFinal Published versio
Achieving peak brightness in an atom laser
In this paper we present experimental results and theory on the first
continuous (long pulse) Raman atom laser. The brightness that can be achieved
with this system is three orders of magnitude greater than has been previously
demonstrated in any other continuously outcoupled atom laser. In addition, the
energy linewidth of a continuous atom laser can be made arbitrarily narrow
compared to the mean field energy of a trapped condensate. We analyze the flux
and brightness of the atom laser with an analytic model that shows excellent
agreement with experiment with no adjustable parameters.Comment: 4 pages, 4 black and white figures, submitted to Physical Revie
A multibeam atom laser: coherent atom beam splitting from a single far detuned laser
We report the experimental realisation of a multibeam atom laser. A single
continuous atom laser is outcoupled from a Bose-Einstein condensate (BEC) via
an optical Raman transition. The atom laser is subsequently split into up to
five atomic beams with slightly different momenta, resulting in multiple,
nearly co-propagating, coherent beams which could be of use in interferometric
experiments. The splitting process itself is a novel realization of Bragg
diffraction, driven by each of the optical Raman laser beams independently.
This presents a significantly simpler implementation of an atomic beam
splitter, one of the main elements of coherent atom optics
Classical noise and flux: the limits of multi-state atom lasers
By direct comparison between experiment and theory, we show how the classical
noise on a multi-state atom laser beam increases with increasing flux. The
trade off between classical noise and flux is an important consideration in
precision interferometric measurement. We use periodic 10 microsecond
radio-frequency pulses to couple atoms out of an F=2 87Rb Bose-Einstein
condensate. The resulting atom laser beam has suprising structure which is
explained using three dimensional simulations of the five state
Gross-Pitaevskii equations.Comment: 4 pages, 3 figure
- …