3,435 research outputs found

    Gauge Symmetry and Gravito-Electromagnetism

    Get PDF
    A tensor description of perturbative Einsteinian gravity about an arbitrary background spacetime is developed. By analogy with the covariant laws of electromagnetism in spacetime, gravito-electromagnetic potentials and fields are defined to emulate electromagnetic gauge transformations under substitutions belonging to the gauge symmetry group of perturbative gravitation. These definitions have the advantage that on a flat background, with the aid of a covariantly constant timelike vector field, a subset of the linearised gravitational field equations can be written in a form that is fully analogous to Maxwell's equations (without awkward factors of 4 and extraneous tensor fields). It is shown how the remaining equations in the perturbed gravitational system restrict the time dependence of solutions to these equations and thereby prohibit the existence of propagating vector fields. The induced gravito-electromagnetic Lorentz force on a test particle is evaluated in terms of these fields together with the torque on a small gyroscope. It is concluded that the analogy of perturbative gravity to Maxwell's description of electromagnetism can be valuable for (quasi-)stationary gravitational phenomena but that the analogy has its limitations.Comment: 29 pages no-fig

    Crystal structure, thermodynamics, magnetics and disorder properties of Be-Fe-Al intermetallics

    Full text link
    The elastic and magnetic properties, thermodynamical stability, deviation from stoichiometry and order/disorder transformations of phases that are relevant to Be alloys were investigated using density functional theory simulations coupled with phonon density of states calculations to capture temperature effects. A novel structure and composition were identified for the Be-Fe binary {\epsilon} phase. In absence of Al, FeBe_5 is predicted to form at equilibrium above ~ 1250 K, while the {\epsilon} phase is stable only below ~ 1650 K, and FeBe_2 is stable at all temperatures below melting. Small additions of Al are found to stabilise FeBe_5 over FeBe_2 and {\epsilon}, while at high Al content, AlFeBe_4 is predicted to form. Deviations from stoichiometric compositions are also considered and found to be important in the case of FeBe_5 and {\epsilon}. The propensity for disordered vs ordered structures is also important for AlFeBe_4 (which exhibits complete Al-Fe disordered at all temperatures) and FeBe_5 (which exhibits an order-disorder transition at ~ 950 K).Comment: 14 pages, 10 figures, accepted for publication in J. Alloy Compd. on 14 March 201

    The Diversity of Argument-Making in the Wild: from Assumptions and Definitions to Causation and Anecdote in Reddit's "Change My View"

    Full text link
    What kinds of arguments do people make, and what effect do they have on others? Normative constraints on argument-making are as old as philosophy itself, but little is known about the diversity of arguments made in practice. We use NLP tools to extract patterns of argument-making from the Reddit site "Change My View" (r/CMV). This reveals six distinct argument patterns: not just the familiar deductive and inductive forms, but also arguments about definitions, relevance, possibility and cause, and personal experience. Data from r/CMV also reveal differences in efficacy: personal experience and, to a lesser extent, arguments about causation and examples, are most likely to shift a person's view, while arguments about relevance are the least. Finally, our methods reveal a gradient of argument-making preferences among users: a two-axis model, of "personal--impersonal" and "concrete--abstract", can account for nearly 80% of the strategy variance between individuals.Comment: 7 pages, 5 tables. Accepted as paper with oral presentation to CogSci 2022, Toronto. Proceedings of the Annual Meeting of the Cognitive Science Society, 4

    Decision Analysis with Geographically Varying Outcomes: Preference Models and Illustrative Applications

    Get PDF
    DRMI Working Paper SeriesThe series is intended to convey the preliminary results of [DRMI] ongoing research. The research described in these papers is preliminary and has not completed the usual review process for Institute publications. We welcome feedback from readers and encourage you to convey your comments and criticisms directly to the authors

    The effect of cluster reconfiguration and non-stoichiometry on uranium vacancy migration in UO2

    Get PDF
    During reactor operation the release of fission gases from the fuel pellet is an important safety issue as it can lead to over-pressurization and failure of the fuel cladding. Uranium vacancy migration has been identified as the limiting step in the diffusion of fission gases through bulk UO2. The uranium vacancy migration energy is, therefore, an important parameter in this phenomenon, as well as other atomic scale processes, such as recovery from radiation damage. Chemical changes under taken by the fuel during irradiation lead to deviations from stoichiometric UO2 and the charge compensating defects that bind to the uranium vacancy also change. Therefore, we have examined the change in the migration energy for a uranium vacancy when bound to either two oxygen vacancies (Schottky defect) or to four U5+ cations (hole defects) representing UO2 and UO2+x respectively. By using empirical potentials within statics we were able to sample a large array of metastable cluster configurations to identify lower energy migration pathways that involve the reconfiguration of the cluster from the ground state configuration to metastable configurations (see UO2+x results in Figure 1). The work is published in ref [1]. Please click Additional Files below to see the full abstract

    Second-Order Nonlinear Mixing of Two Modes in a Planar Photonic Crystal Microcavity

    Full text link
    Polarization-resolved second-harmonic spectra are obtained from the resonant modes of a two-dimensional planar photonic crystal microcavity patterned in a free-standing InP slab. The photonic crystal microcavity is comprised of a single missing-hole defect in a hexagonal photonic crystal host formed with elliptically-shaped holes. The cavity supports two orthogonally-polarized resonant modes split by 60 wavenumbers. Sum-frequency data are reported from the nonlinear interaction of the two coherently excited modes, and the polarization dependence is explained in terms of the nonlinear susceptibility tensor of the host InP.Comment: 7 pages, 8 Postscript figures, to be presented at Photonics West Jan. 2

    Representation of a complex Green function on a real basis: I. General Theory

    Full text link
    When the Hamiltonian of a system is represented by a finite matrix, constructed from a discrete basis, the matrix representation of the resolvent covers only one branch. We show how all branches can be specified by the phase of a complex unit of time. This permits the Hamiltonian matrix to be constructed on a real basis; the only duty of the basis is to span the dynamical region of space, without regard for the particular asymptotic boundary conditions that pertain to the problem of interest.Comment: about 40 pages with 5 eps-figure
    • …
    corecore