368 research outputs found
Nature of the supercritical mesophase
It has been reported that at temperatures above the critical there is no ācontinuity of liquid and gasā, as originally hypothesized by van der Waals [1]. Rather, both gas and liquid phases, with characteristic properties as such, extend to supercritical temperatures [2]-[4]. Each phase is bounded by the locus of a percolation transition, i.e. a higher-order thermodynamic phase change associated with percolation of gas clusters in a large void, or liquid interstitial vacancies in a large cluster. Between these two-phase bounds, it is reported there exists a mesophase that resembles an otherwise homogeneous dispersion of gas micro-bubbles in liquid (foam) and a dispersion of liquid micro-droplets in gas (mist). Such a colloidal-like state of a pure one-component fluid represents a hitherto unchartered equilibrium state of matter besides pure solid, liquid or gas. Here we provide compelling evidence, from molecular dynamics (MD) simulations, for the existence of this supercritical mesophase and its colloidal nature. We report preliminary results of computer simulations for a model fluid using a simplistic representation of atoms or molecules, i.e. a hard-core repulsion with an attraction so short that the atoms are referred to as āadhesive spheresā. Molecular clusters, and hence percolation transitions, are unambiguously defined. Graphics of color-coded clusters show colloidal characteristics of the supercritical mesophase. We append this Letter to Natural Science with a debate on the scientific merits of its content courtesy of correspondence with Nature (Appendix)info:eu-repo/semantics/publishedVersio
Structure and Aggregation of a Helix-Forming Polymer
We have studied the competition between helix formation and aggregation for a
simple polymer model. We present simulation results for a system of two such
polymers, examining the potential of mean force, the balance between inter and
intramolecular interactions, and the promotion or disruption of secondary
structure brought on by the proximity of the two molecules. In particular, we
demonstrate that proximity between two such molecules can stabilize secondary
structure. However, for this model, observed secondary structure is not stable
enough to prevent collapse of the system into an unstructured globule.Comment: Accepted to the Journal of Chemical Physic
Clustering in 18O - absolute determination of branching ratios via high-resolution particle spectroscopy
The determination of absolute branching ratios for high-energy states in light nuclei is an important and useful tool for probing the underlying nuclear structure of individual resonances: for example, in establishing the tendency of an excited state towards
Ī±
-cluster structure. Difficulty arises in measuring these branching ratios due to similarities in available decay channels, such as (
18
O,
n
) and (
18
O,
2
n
), as well as differences in geometric efficiencies due to population of bound excited levels in daughter nuclei. Methods are presented using Monte Carlo techniques to overcome these issues
Enhanced Thermal Stability and Reduced Aggregation in an Antibody Fab Fragment at Elevated Concentrations
The aggregation of protein therapeutics such as antibodies remains a major challenge in the biopharmaceutical industry. The present study aimed to characterize the impact of the protein concentration on the mechanisms and potential pathways for aggregation, using the antibody Fab fragment A33 as the model protein. Aggregation kinetics were determined for 0.05 to 100 mg/mL Fab A33, at 65 Ā°C. A surprising trend was observed whereby increasing the concentration decreased the relative aggregation rate, ln(v) (% day-1), from 8.5 at 0.05 mg/mL to 4.4 at 100 mg/mL. The absolute aggregation rate (mol L-1 h-1) increased with the concentration following a rate order of approximately 1 up to a concentration of 25 mg/mL. Above this concentration, there was a transition to an apparently negative rate order of -1.1 up to 100 mg/mL. Several potential mechanisms were examined as possible explanations. A greater apparent conformational stability at 100 mg/mL was observed from an increase in the thermal transition midpoint (Tm) by 7-9 Ā°C, relative to those at 1-4 mg/mL. The associated change in unfolding entropy (ā³Svh) also increased by 14-18% at 25-100 mg/mL, relative to those at 1-4 mg/mL, indicating reduced conformational flexibility in the native ensemble. Addition of Tween or the crowding agents Ficoll and dextran, showed that neither surface adsorption, diffusion limitations nor simple volume crowding affected the aggregation rate. Fitting of kinetic data to a wide range of mechanistic models implied a reversible two-state conformational switch mechanism from aggregation-prone monomers (N*) into non-aggregating native forms (N) at higher concentrations. kD measurements from DLS data also suggested a weak self-attraction while remaining colloidally stable, consistent with macromolecular self-crowding within weakly associated reversible oligomers. Such a model is also consistent with compaction of the native ensemble observed through changes in Tm and ā³Svh
Thermodynamic Origin of Differential Excipient-Lysozyme Interactions
Understanding the intricate interplay of interactions between proteins, excipients, ions and water is important to achieve the effective purification and stable formulation of protein therapeutics. The free energy of lysozyme interacting with two kinds of polyanionic excipients, citrate and tripolyphosphate, together with sodium chloride and TRIS-buffer, are analysed in multiple-walker metadynamics simulations to understand why tripolyphosphate causes lysozyme to precipitate but citrate does not. The resulting multiscale decomposition of energy and entropy components for water, sodium chloride, excipients and lysozyme reveals that lysozyme is more stabilised by the interaction of tripolyphosphate with basic residues. This is accompanied by more sodium ions being released into solution from tripolyphosphate than for citrate, whilst the latter instead has more water molecules released into solution. Even though lysozyme aggregation is not directly probed in this study, these different mechanisms are suspected to drive the cross-linking between lysozyme molecules with vacant basic residues, ultimately leading to precipitation
Thermodynamic Origin of Differential Excipient-Lysozyme Interactions
From Frontiers via Jisc Publications RouterHistory: collection 2021, received 2021-03-31, accepted 2021-05-25, epub 2021-06-11Publication status: PublishedUnderstanding the intricate interplay of interactions between proteins, excipients, ions and water is important to achieve the effective purification and stable formulation of protein therapeutics. The free energy of lysozyme interacting with two kinds of polyanionic excipients, citrate and tripolyphosphate, together with sodium chloride and TRIS-buffer, are analysed in multiple-walker metadynamics simulations to understand why tripolyphosphate causes lysozyme to precipitate but citrate does not. The resulting multiscale decomposition of energy and entropy components for water, sodium chloride, excipients and lysozyme reveals that lysozyme is more stabilised by the interaction of tripolyphosphate with basic residues. This is accompanied by more sodium ions being released into solution from tripolyphosphate than for citrate, whilst the latter instead has more water molecules released into solution. Even though lysozyme aggregation is not directly probed in this study, these different mechanisms are suspected to drive the cross-linking between lysozyme molecules with vacant basic residues, ultimately leading to precipitation
Multihospital Outbreak of Clostridium difficile Infection, Cleveland, Ohio, USA
To determine whether a multihospital Clostridium difficile outbreak was associated with epidemic strains and whether use of particular fluoroquinolones was associated with increased infection rates, we cultured feces from C. difficileāinfected patients. Use of fluoroquionolones with enhanced antianaerobic activity was not associated with increased infection rates
Art Therapy Large Group
We, the conference organisers, hoped the provision of an Art Therapy Large Group (ATLG) for the conference on each of the three days, would give delegates the opportunity to explore, through the use of art, performance and dialogue, their experiences of the conference and the dynamics that arise in a large group. We had run an ATLG at our first art therapy conference (Finding a voice, making your mark: defining art therapy for the 21st century) in 2013, and hoped there might be some continuity between the first and second ATLG, a development of the dialogue of word, performance and image through time
- ā¦