36 research outputs found

    Première évaluation du risque toxique lié aux cyanobactéries d'eau douce en France : le programme " EFFLOCYA "

    Get PDF
    Une enquête menée à l'aide d'un questionnaire couvrant l'ensemble du territoire français ainsi que l'étude spécifique d'écosystèmes aquatiques de type lacs et réservoirs ont permis de montrer que les proliférations de cyanobactéries toxiques pouvaient a priori affecter n'importe quel plan d'eau de l'Héxagone. Les genres rencontrés responsables de la production de toxines, le plus souvent hépatiques, sont Microcystis, Planktothrix, Anabœna et Cylindrospermopsis.Les efflorescences peuvent se produire tout au long de l'année car certaines espèces sont adaptées aux eaux froides et elles ne sont pas liées de manière univoque à un état eutrophe de l'écosystème.La production toxinique est la plus élevée lorsque les populations cyanobactériennes sont peu ou pas diversifiées et à la lumière de travaux récents, cette production serait favorisée, en ce qui concerne les microcystines, par un milieu riche en nitrate, pauvre en ammonium et fortement carencé en fer.La suite à donner à ce travail pourrait être la création d'un observatoire national des efflorescences toxiques.An inquiry covering the whole French territory together with specific studies of natural and artificial reservoirs has been made to assess the human health risk related to the prolifération of toxin producing blue green algae (cyanobacteria). The conclusions show that any lentic ecosystem can be affected like it has been shown already in other countries all over the world and more specifically within the EU. The main genus concemed are: Microcystis, Planktothrix, Anabœna and Cylindrospermopsis.Blooms can occur juring the whole year since some species are well adapted to cold water and are not clearly linked with the trophic status of the aquatic ecosystem.The toxinic production is the largest when the cyanobacteria populations contain only a few number of species. The results of recent works are well correlated with our findings which show that the production of toxic heptapeptides (microcystins) could be correlated with high levels of nitrate and depletions of ammonium and iron.The follow up of this work should now include the set up of a national observatory of toxic algal blooms

    Monitoring the marine physical and chemical environment within the Reef 2050 Integrated Monitoring and Reporting Program: final Report of the Marine Physical and Chemical Environment Expert Group

    Get PDF
    [Extract] The objectives of the marine physico-chemical environment expert group include: Review of existing indicators of water quality and an assessment of their adequacy and ability to clearly resolve anticipated changes in reef water quality; o provide sufficient context to aid in the interpretation of ecological responses associated with changes in water quality; Identify alternative indicators where review suggests existing indicators are inadequate; Review and evaluate existing water quality monitoring programs and other sources of water quality information (e.g. marine modelling, satellite remote sensing) and existing and emerging technologies, as candidates for inclusion in future Reef monitoring to inform identified selected priority indicators; A gap analysis of information requirements for physico-chemical parameters as part of various reporting obligations; Recommendations for an observational strategy and sampling approach for Marine physico-chemical variables to inform selected priority indicators under RIMReP. This will include defining data needs of marine modelling activities if those activities are to underpin parts of RIMReP; Recommendations for the development of data aggregation techniques and reporting products as informed by the RIMReP process and through existing complementary projects.An accessible copy of this report is not yet available from this repository, please contact [email protected] for more information

    Evaluation of contaminant removal of reverse osmosis and advanced oxidation in full-scale operation by combining passive sampling with chemical analysis and bioanalytical tools

    No full text
    Advanced water treatment of secondary treated effluent requires stringent quality control to achieve a water quality suitable for augmenting drinking water supplies. The removal of micropollutants such as pesticides, industrial chemicals, endocrine disrupting chemicals (EDC), pharmaceuticals, and personal care products (PPCP) is paramount. As the concentrations of individual contaminants are typically low, frequent analytical screening is both laborious and costly. We propose and validate an approach for continuous monitoring by applying passive sampling with Empore disks in vessels that were designed to slow down the water flow, and thus uptake kinetics, and ensure that the uptake is only marginally dependent on the chemicals' physicochemical properties over a relatively narrow molecular size range. This design not only assured integrative sampling over 27 days for a broad range of chemicals but also permitted the use of a suite of bioanalytical tools as sum parameters, representative of mixtures of chemicals with a common mode of toxic action. Bioassays proved to be more sensitive than chemical analysis to assess the removal of organic micropollutants by reverse osmosis, followed by UV/H(2)O(2) treatment, as many individual compounds fell below the quantification limit of chemical analysis, yet still contributed to the observed mixture toxicity. Nonetheless in several cases, the responses in the bioassays were also below their quantification limits and therefore only three bioassays were evaluated here, representing nonspecific toxicity and two specific end points for estrogenicity and photosynthesis inhibition. Chemical analytical techniques were able to quantify 32 pesticides, 62 PCPPs, and 12 EDCs in reverse osmosis concentrate. However, these chemicals could explain only 1% of the nonspecific toxicity in the Microtox assay in the reverse osmosis concentrate and 0.0025% in the treated water. Likewise only 1% of the estrogenic effect in the E-SCREEN could be explained by the quantified EDCs after reverse osmosis. In comparison, >50% of the estrogenic effect can typically be explained in sewage. Herbicidal activity could be fully explained by chemical analysis as the sampling period coincided with an illegal discharge and two herbicides dominated the mixture effect. The mass balance of the reverse osmosis process matched theoretical expectations for both chemical analysis and bioanalytical tools. Overall the investigated treatment train removed >97% estrogenicity, >99% herbicidal activity, and >96% baseline toxicity, confirming the suitability of the treatment train for polishing water for indirect potable reuse. The product water was indistinguishable from local tap water in all three bioassays. This study demonstrates the suitability and robustness of passive sampling linked with bioanalytical tools for semicontinuous monitoring of advanced water treatment with respect to micropollutant removal
    corecore