31,760 research outputs found
Coherent and generalized intelligent states for infinite square well potential and nonlinear oscillators
This article is an illustration of the construction of coherent and
generalized intelligent states which has been recently proposed by us for an
arbitrary quantum system . We treat the quantum system submitted to the
infinite square well potential and the nonlinear oscillators. By means of the
analytical representation of the coherent states \`{a} la Gazeau-Klauder and
those \`{a} la Klauder-Perelomov, we derive the generalized intelligent states
in analytical ways
Generalized coherent and intelligent states for exact solvable quantum systems
The so-called Gazeau-Klauder and Perelomov coherent states are introduced for
an arbitrary quantum system. We give also the general framework to construct
the generalized intelligent states which minimize the Robertson-Schr\"odinger
uncertainty relation. As illustration, the P\"oschl-Teller potentials of
trigonometric type will be chosen. We show the advantage of the analytical
representations of Gazeau-Klauder and Perelomov coherent states in obtaining
the generalized intelligent states in analytical way
Views of the Universe
Man has been led to various views of the universe at various times in history. Here's how he sees it today
Are there any good digraph width measures?
Several different measures for digraph width have appeared in the last few
years. However, none of them shares all the "nice" properties of treewidth:
First, being \emph{algorithmically useful} i.e. admitting polynomial-time
algorithms for all \MS1-definable problems on digraphs of bounded width. And,
second, having nice \emph{structural properties} i.e. being monotone under
taking subdigraphs and some form of arc contractions. As for the former,
(undirected) \MS1 seems to be the least common denominator of all reasonably
expressive logical languages on digraphs that can speak about the edge/arc
relation on the vertex set.The latter property is a necessary condition for a
width measure to be characterizable by some version of the cops-and-robber game
characterizing the ordinary treewidth. Our main result is that \emph{any
reasonable} algorithmically useful and structurally nice digraph measure cannot
be substantially different from the treewidth of the underlying undirected
graph. Moreover, we introduce \emph{directed topological minors} and argue that
they are the weakest useful notion of minors for digraphs
and Perelomov number coherent states: algebraic approach for general systems
We study some properties of the Perelomov number coherent states.
The Schr\"odinger's uncertainty relationship is evaluated for a position and
momentum-like operators (constructed from the Lie algebra generators) in these
number coherent states. It is shown that this relationship is minimized for the
standard coherent states. We obtain the time evolution of the number coherent
states by supposing that the Hamiltonian is proportional to the third generator
of the Lie algebra. Analogous results for the Perelomov
number coherent states are found. As examples, we compute the Perelomov
coherent states for the pseudoharmonic oscillator and the two-dimensional
isotropic harmonic oscillator
Canonical Coherent States for the Relativistic Harmonic Oscillator
In this paper we construct manifestly covariant relativistic coherent states
on the entire complex plane which reproduce others previously introduced on a
given representation, once a change of variables unit disk is performed. We also introduce higher-order, relativistic
creation and annihilation operators, \C,\Cc, with canonical commutation
relation [\C,\Cc]=1 rather than the covariant one [\Z,\Zc]\approx Energy
and naturally associated with the group. The canonical (relativistic)
coherent states are then defined as eigenstates of \C. Finally, we construct
a canonical, minimal representation in configuration space by mean of
eigenstates of a canonical position operator.Comment: 11 LaTeX pages, final version, shortened and corrected, to appear in
J. Math. Phy
Modern Michelson-Morley experiment using cryogenic optical resonators
We report on a new test of Lorentz invariance performed by comparing the
resonance frequencies of two orthogonal cryogenic optical resonators subject to
Earth's rotation over 1 year. For a possible anisotropy of the speed of light
c, we obtain 2.6 +/- 1.7 parts in 10^15. Within the Robertson-Mansouri-Sexl
test theory, this implies an isotropy violation parameter beta - delta - 1/2 of
-2.2 +/- 1.5 parts in 10^9, about three times lower than the best previous
result. Within the general extension of the standard model of particle physics,
we extract limits on 7 parameters at accuracies down to a part in 10^15,
improving the best previous result by about two orders of magnitude
Simultaneous minimum-uncertainty measurement of discrete-valued complementary observables
We have made the first experimental demonstration of the simultaneous minimum
uncertainty product between two complementary observables for a two-state
system (a qubit). A partially entangled two-photon state was used to perform
such measurements. Each of the photons carries (partial) information of the
initial state thus leaving a room for measurements of two complementary
observables on every member in an ensemble.Comment: 4 pages, 4 figures, REVTeX, submitted to PR
- …