3,877 research outputs found
Institutional Effects in a Simple Model of Educational Production
This paper presents a model of educational production that tries to make sense of recent evidence on effects of institutional arrangements on student performance. In a simple principal-agent framework, students choose their learning effort to maximize their net benefits, while the government chooses educational spending to maximize its net benefits. In the jointly determined equilibrium, schooling quality is shown to depend on several institutionally determined parameters. The impact on student performance of institutions such as central examinations, centralization versus school autonomy, teachers\u27 influence, parental influence, and competition from private schools is analyzed. Furthermore, the model can rationalize why positive resource effects may be lacking in educational production
The incidence and clinical burden of respiratory syncytial virus disease identified through hospital outpatient presentations in Kenyan children
There is little information that describe the burden of respiratory syncytial virus (RSV) associated disease in the tropical African outpatient setting.
Methods
We studied a systematic sample of children aged <5 years presenting to a rural district hospital in Kenya with acute respiratory infection (ARI) between May 2002 and April 2004. We collected clinical data and screened nasal wash samples for RSV antigen by immunofluorescence. We used a linked demographic surveillance system to estimate disease incidence.
Results
Among 2143 children tested, 166 (8%) were RSV positive (6% among children with upper respiratory tract infection and 12% among children with lower respiratory tract infection (LRTI). RSV was more likely in LRTI than URTI (p<0.001). 51% of RSV cases were aged 1 year or over. RSV cases represented 3.4% of hospital outpatient presentations. Relative to RSV negative cases, RSV positive cases were more likely to have crackles (RR = 1.63; 95% CI 1.34–1.97), nasal flaring (RR = 2.66; 95% CI 1.40–5.04), in-drawing (RR = 2.24; 95% CI 1.47–3.40), fast breathing for age (RR = 1.34; 95% CI 1.03–1.75) and fever (RR = 1.54; 95% CI 1.33–1.80). The estimated incidence of RSV-ARI and RSV-LRTI, per 100,000 child years, among those aged <5 years was 767 and 283, respectively.
Conclusion
The burden of childhood RSV-associated URTI and LRTI presenting to outpatients in this setting is considerable. The clinical features of cases associated with an RSV infection were more severe than cases without an RSV diagnosis
Duration of shedding of respiratory syncytial virus in a community study of Kenyan children
Background: Our understanding of the transmission dynamics of respiratory syncytial virus (RSV) infection will be better informed with improved data on the patterns of shedding in cases not limited only to hospital admissions.
Methods: In a household study, children testing RSV positive by direct immunofluorescent antibody test (DFA) were enrolled. Nasal washings were scheduled right away, then every three days until day 14, every 7 days until day 28 and every 2 weeks until a maximum of 16 weeks, or until the first DFA negative RSV specimen. The relationship between host factors, illness severity and viral shedding was investigated using Cox regression methods.
Results: From 151 families a total of 193 children were enrolled with a median age of 21 months (range 1-164 months), 10% infants and 46% male. The rate of recovery from infection was 0.22/person/day (95% CI 0.19-0.25) equivalent to a mean duration of shedding of 4.5 days (95%CI 4.0-5.3), with a median duration of shedding of 4 days (IQR 2-6, range 1-14). Children with a history of RSV infection had a 40% increased rate of recovery i.e. shorter duration of viral shedding (hazard ratio 1.4, 95% CI 1.01-1.86). The rate of cessation of shedding did not differ significantly between males and females, by severity of infection or by age.
Conclusion: We provide evidence of a relationship between the duration of shedding and history of infection, which may have a bearing on the relative role of primary versus re-infections in RSV transmission in the community
Recommended from our members
Development and Validation of the Quantum Mechanical Bespoke Protein Force Field.
Molecular mechanics force field parameters for macromolecules, such as proteins, are traditionally fit to reproduce experimental properties of small molecules, and thus, they neglect system-specific polarization. In this paper, we introduce a complete protein force field that is designed to be compatible with the quantum mechanical bespoke (QUBE) force field by deriving nonbonded parameters directly from the electron density of the specific protein under study. The main backbone and sidechain protein torsional parameters are rederived in this work by fitting to quantum mechanical dihedral scans for compatibility with QUBE nonbonded parameters. Software is provided for the preparation of QUBE input files. The accuracy of the new force field, and the derived torsional parameters, is tested by comparing the conformational preferences of a range of peptides and proteins with experimental measurements. Accurate backbone and sidechain conformations are obtained in molecular dynamics simulations of dipeptides, with NMR J coupling errors comparable to the widely used OPLS force field. In simulations of five folded proteins, the secondary structure is generally retained, and the NMR J coupling errors are similar to standard transferable force fields, although some loss of the experimental structure is observed in certain regions of the proteins. With several avenues for further development, the use of system-specific nonbonded force field parameters is a promising approach for next-generation simulations of biological molecules
Statistical challenges in assessing potential efficacy of complex interventions in pilot or feasibility studies
Early phase trials of complex interventions currently focus on assessing the feasibility of a large RCT and on conducting pilot work. Assessing the efficacy of the proposed intervention is generally discouraged, due to concerns of underpowered hypothesis testing. In contrast, early assessment of efficacy is common for drug therapies, where phase II trials are often used as a screening mechanism to identify promising treatments. In this paper we outline the challenges encountered in extending ideas developed in the phase II drug trial literature to the complex intervention setting. The prevalence of multiple endpoints and clustering of outcome data are identified as important considerations, having implications for timely and robust determination of optimal trial design parameters. The potential for Bayesian methods to help to identify robust trial designs and optimal decision rules is also explored
Recommended from our members
State of the California current 2013-14: El niño looming
In 2013, the California current was dominated by strong coastal upwelling and high productivity. Indices of total cumulative upwelling for particular coastal locations reached some of the highest values on record. Chlorophyll a levels were high throughout spring and summer. Catches of upwelling-related fish species were also high. After a moderate drop in upwelling during fall 2013, the California current system underwent a major change in phase. Three major basin-scale indicators, the PDO, the NPGO, and the ENSO-MEI, all changed phase at some point during the winter of 2013/14. The PDO changed to positive values, indicative of warmer waters in the North Pacific; the NPGO to negative values, indicative of lower productivity along the coast; and the MEI to positive values, indicative of an oncoming El Niño. Whereas the majority of the California Current system appears to have transitioned to an El Niño state by August 2014, based on decreases in upwelling and chlorophyll a concentration, and increases in SST, there still remained pockets of moderate upwelling, cold water, and high chlorophyll a biomass at various central coast locations, unlike patterns seen during the more major El Niños (e.g., the 97-98 event). Catches of rockfish, market squid, euphausiids, and juvenile sanddab remained high along the central coast, whereas catches of sardine and anchovy were low throughout the CCS. 2014 appears to be heading towards a moderate El Niño state, with some remaining patchy regions of upwellingdriven productivity along the coast. Superimposed on this pattern, three major regions have experienced possibly non-El Niño-related warming since winter: the Bering Sea, the Gulf of Alaska, and offshore of southern California. It is unclear how this warming may interact with the predicted El Niño, but the result will likely be reduced growth or reproduction for many key fisheries species
The Caenorhabditis chemoreceptor gene families
Background: Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of
chemoperception in specific species.
Results: Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger
superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species.
Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei.
Conclusion: Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for
chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space.JHT was supported by NIH grant RO1GM48700 and HMR by R01AI56081
Band alignment and enhanced breakdown field of simultaneously oxidized and nitrided Zr film on Si
The band alignment of ZrO2/interfacial layer/Si structure fabricated by simultaneous oxidation and nitridation of sputtered Zr on Si in N2O at 700°C for different durations has been established by using X-ray photoelectron spectroscopy. Valence band offset of ZrO2/Si was found to be 4.75 eV, while the highest corresponding conduction offset of ZrO2/interfacial layer was found to be 3.40 eV; owing to the combination of relatively larger bandgaps, it enhanced electrical breakdown field to 13.6 MV/cm at 10-6 A/cm2
RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus
Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions
Functional Locomotor Consequences of Uneven Forefeet for Trot Symmetry in Individual Riding Horses
ABSTRACT: Left-right symmetrical distal limb conformation can be an important prerequisite for a successful performance, and it is often hypothesized that asymmetric or uneven feet are important enhancing factors for the development of lameness. On a population level, it has been demonstrated that uneven footed horses are retiring earlier from elite level competition, but the biomechanical consequences are not yet known. The objectives of this study were to compare the functional locomotor asymmetries of horses with uneven to those with even feet. Hoof kinetics and distal limb kinematics were collected from horses (n = 34) at trot. Dorsal hoof wall angle was used to classify horses as even or uneven (1.5° difference between forefeet respectively) and individual feet as flat (55°). Functional kinetic parameters were compared between even and uneven forefeet using MANOVA followed by ANOVA. The relative influences of differences in hoof angle between the forefeet and of absolute hoof angle on functional parameters were analysed using multiple regression analysis (P<0.05). In horses with uneven feet, the side with the flatter foot showed a significantly larger maximal horizontal braking and vertical ground reaction force, a larger vertical fetlock displacement and a suppler fetlock spring. The foot with a steeper hoof angle was linearly correlated with an earlier braking-propulsion transition. The conformational differences between both forefeet were more important for loading characteristics than the individual foot conformation of each individual horse. The differences in vertical force and braking force between uneven forefeet could imply either an asymmetrical loading pattern without a pathological component or a subclinical lameness as a result of a pathological development in the steeper foot
- …