35,954 research outputs found
Man's capability for self-locomotion on the moon. Phase 2 - Bungee simulator evaluation
Design and performance of suspension system for lunar gravity simulatio
Mott g-Ratios in Rbx(NH3)1-x and Oxidation state of Rubidium Compounds from XAS
The x-ray absorption spectra (XAS) of Rb metal, Rh,( JH,J, ,, 2H-NbSe2Rb111x and RbBr near the Rb K-edge have been used to ascertain that the oxidation state V of rubidium dissolved in ammonia and intt:rcalated in the layer compound is in the range 0 \u3c V \u3c I. Theobservededge shifts with temperature for semimctals are explainedin terms of the population of band states, and the ratio of the density states near the mobility edge over that calculated for a free electron model, i.e. the Mott ratio g, is ascertained using a semiempirical relation developed for the x-ray absorbance from Is levels to empty states ncar the mobility edge
Squeezing out the last 1 nanometer of water: A detailed nanomechanical study
In this study, we present a detailed analysis of the squeeze-out dynamics of
nanoconfined water confined between two hydrophilic surfaces measured by
small-amplitude dynamic atomic force microscopy (AFM). Explicitly considering
the instantaneous tip-surface separation during squeezeout, we confirm the
existence of an adsorbed molecular water layer on mica and at least two
hydration layers. We also confirm the previous observation of a sharp
transition in the viscoelastic response of the nanoconfined water as the
compression rate is increased beyond a critical value (previously determined to
be about 0.8 nm/s). We find that below the critical value, the tip passes
smoothly through the molecular layers of the film, while above the critical
speed, the tip encounters "pinning" at separations where the film is able to
temporarily order. Pre-ordering of the film is accompanied by increased force
fluctuations, which lead to increased damping preceding a peak in the film
stiffness once ordering is completed. We analyze the data using both
Kelvin-Voigt and Maxwell viscoelastic models. This provides a complementary
picture of the viscoelastic response of the confined water film
Space shuttle contamination due to backflow from control motor exhaust
Spacecraft contamination of the space shuttle orbiter and accompanying Spacelab payloads is studied. The scattering of molecules from the vernier engines and flash evaporator nozzle after impingement on the orbiter wing surfaces, and the backflow of molecules out of the flash evaporator nozzle plume flow field due to intermolecular collisions in the plume are the problems discussed. A method was formulated for dealing with these problems, and detailed results are given
Min-Max Theorems for Packing and Covering Odd -trails
We investigate the problem of packing and covering odd -trails in a
graph. A -trail is a -walk that is allowed to have repeated
vertices but no repeated edges. We call a trail odd if the number of edges in
the trail is odd. Let denote the maximum number of edge-disjoint odd
-trails, and denote the minimum size of an edge-set that
intersects every odd -trail.
We prove that . Our result is tight---there are
examples showing that ---and substantially improves upon
the bound of obtained in [Churchley et al 2016] for .
Our proof also yields a polynomial-time algorithm for finding a cover and a
collection of trails satisfying the above bounds.
Our proof is simple and has two main ingredients. We show that (loosely
speaking) the problem can be reduced to the problem of packing and covering odd
-trails losing a factor of 2 (either in the number of trails found, or
the size of the cover). Complementing this, we show that the
odd--trail packing and covering problems can be tackled by exploiting
a powerful min-max result of [Chudnovsky et al 2006] for packing
vertex-disjoint nonzero -paths in group-labeled graphs
Constructing new optimal entanglement witnesses
We provide a new class of indecomposable entanglement witnesses. In 4 x 4
case it reproduces the well know Breuer-Hall witness. We prove that these new
witnesses are optimal and atomic, i.e. they are able to detect the "weakest"
quantum entanglement encoded into states with positive partial transposition
(PPT). Equivalently, we provide a new construction of indecomposable atomic
maps in the algebra of 2k x 2k complex matrices. It is shown that their
structural physical approximations give rise to entanglement breaking channels.
This result supports recent conjecture by Korbicz et. al.Comment: 9 page
A possible mechanism of ultrafast amorphization in phase-change memory alloys: an ion slingshot from the crystalline to amorphous position
We propose that the driving force of an ultrafast crystalline-to-amorphous
transition in phase-change memory alloys are strained bonds existing in the
(metastable) crystalline phase. For the prototypical example of GST, we
demonstrate that upon breaking of long Ge-Te bond by photoexcitation Ge ion
shot from an octahedral crystalline to a tetrahedral amorphous position by the
uncompensated force of strained short bonds. Subsequent lattice relaxation
stabilizes the tetrahedral surroundings of the Ge atoms and ensures the
long-term stability of the optically induced phase.Comment: 6 pages, 3 figure
Transport theory yields renormalization group equations
We show that dissipative transport and renormalization can be described in a
single theoretical framework. The appropriate mathematical tool is the
Nakajima-Zwanzig projection technique. We illustrate our result in the case of
interacting quantum gases, where we use the Nakajima-Zwanzig approach to
investigate the renormalization group flow of the effective two-body
interaction.Comment: 11 pages REVTeX, twocolumn, no figures; revised version with
additional examples, to appear in Phys. Rev.
- …