27,743 research outputs found

    Neutrino Mass and Oscillations

    Get PDF
    Current evidence for neutrino oscillation is reviewed, some areas for closer investigation are suggested, and a plausible future experimental program is summarized.Comment: Text of talk presented at Lepton-Photon 99 Conference, Stanford, Aug. 9-14, 1999; to be published in the Proceedings. LaTeX, 22 pages, 4 figures, 6 Postscript file

    Direct Measurement of Neutrino Mass

    Full text link
    The sum of the masses of the three neutrino mass eigenstates is now constrained both from above and below, and lies between 55 and 6900 meV. The lower limit is set by neutrino oscillations and the fact that masses are non-negative. The upper limit is set by laboratory measurements on the beta decay of tritium. These determinations share a common characteristic of being essentially model independent, or "direct." The clustering on large scales in the universe depends on this quantity, and, within the framework of Lambda-CDM cosmology, favors a mass sum below about 600 meV. In this article, the laboratory approach to neutrino mass via beta decay is emphasized, particularly an experiment now under construction, KATRIN, on the beta decay of tritium. Another candidate beta-active nuclide, Re-187, offers an advantage in phase space but calls for a very different experimental approach.Comment: 6 pages, 2 figures, for Proceedings of Carolina International Symposium on Neutrino Physics, Columbia, SC, May 15-17, 2008. To be published in J.Phys.: Conf. Serie

    Extremal extensions of entanglement witnesses: Unearthing new bound entangled states

    Full text link
    In this paper, we discuss extremal extensions of entanglement witnesses based on Choi's map. The constructions are based on a generalization of the Choi map due to Osaka, from which we construct entanglement witnesses. These extremal extensions are powerful in terms of their capacity to detect entanglement of positive under partial transpose (PPT) entangled states and lead to unearthing of entanglement of new PPT states. We also use the Cholesky-like decomposition to construct entangled states which are revealed by these extremal entanglement witnesses.Comment: 8 pages 6 figures revtex4-

    Transport theory yields renormalization group equations

    Full text link
    We show that dissipative transport and renormalization can be described in a single theoretical framework. The appropriate mathematical tool is the Nakajima-Zwanzig projection technique. We illustrate our result in the case of interacting quantum gases, where we use the Nakajima-Zwanzig approach to investigate the renormalization group flow of the effective two-body interaction.Comment: 11 pages REVTeX, twocolumn, no figures; revised version with additional examples, to appear in Phys. Rev.

    Search for the second forbidden beta decay of 8B to the ground state of 8Be

    Full text link
    A significant decay branch of 8B to the ground state of 8Be would extend the solar neutrino spectrum to higher energies than anticipated in the standard solar models. These high-energy neutrinos would affect current neutrino oscillation results and also would be a background to measurements of the hep process. We have measured the delayed alpha particles from the decay of 8B, with the goal of observing the two 46-keV alpha particles arising from the ground-state decay. The 8B was produced using an in-flight radioactive beam technique. It was implanted in a silicon PIN-diode detector that was capable of identifying the alpha-particles from the 8Be ground state. From this measurement we find an upper limit (at 90% confidence level) of 7.3 x 10^{-5} for the branching ratio to the ground state. In addition to describing this measurement, we present a theoretical calculation for this branching ratio.Comment: One reference corrected. Minor edits in tex

    KATRIN: an experiment to measure the neutrino mass

    Full text link
    KATRIN is a very large scale tritium-beta-decay experiment to determine the mass of the neutrino. It is presently under construction at the Forschungszentrum Karlsruhe, and makes use of the Tritium Laboratory built there for the ITER project. The combination of a very large retarding-potential electrostatic-magnetic spectrometer and an intense gaseous molecular tritium source makes possible a sensitivity to neutrino mass of 0.2 eV, about an order of magnitude below present laboratory limits. The measurement is kinematic and independent of whether the neutrino is Dirac or Majorana. The status of the project is summarized briefly in this report.Comment: 3 pages, 1 figure. For Proceedings of Topics in Astroparticle and Underground Physics, Sendai, Sept. 2007. To be published in J.Phys.: Conf. Serie
    corecore