1,114 research outputs found
Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere
Includes bibliographical references (pages 1924-1925).Agriculture plays a major role in the global fluxes of the greenhouse gases carbon dioxide, nitrous oxide, and methane. From 1991 to 1999, we measured gas fluxes and other sources of global warming potential (GWP) in cropped and nearby unmanaged ecosystems. Net GWP (grams of carbon dioxide equivalents per square meter per year) ranged from 110 in our conventional tillage systems to -211 in early successional communities. None of the annual cropping systems provided net mitigation, although soil carbon accumulation in no-till systems came closest to mitigating all other sources of GWP. In all but one ecosystem, nitrous oxide production was the single greatest source of GWP. In the late successional system, GWP was neutral because of significant methane oxidation. These results suggest additional opportunities for lessening the GWP of agronomic systems.Publisher version: http://www.jstor.org/stable/3077685
Beam optics study for a potential VHEE beam delivery system
VHEE (Very High Energy Electron) therapy can be superior to conventional radiotherapy for the treatment of deep seated tumours, whilst not necessarily requiring the space and cost of proton or heavy ion facilities. Developments in high gradient RF technology have allowed electrons to be accelerated to VHEE energies in a compact space, meaning that treatment could be possible with a shorter linac. A crucial component of VHEE treatment is the transfer of the beam from accelerator to patient. This is required to magnify the beam to cover the transverse extent of the tumour, whilst ensuring a uniform beam distribution. Two principle methodologies for the design of a compact transfer line are presented. The first of these is based upon a quadrupole lattice and optical magnification of beam size. A minimisation algorithm is used to enforce certain criteria on the beam distribution at the patient, defining the lattice through an automated routine. Separately, a dual scattering-foil based system is also presented, which uses similar algorithms for the optimisation of the foil geometry in order to achieve the desired beam shape at the patient location
A Physical Model for the Origin of Quasar Lifetimes
We propose a model of quasar lifetimes in which observational quasar
lifetimes and an intrinsic lifetime of rapid accretion are strongly
distinguished by the physics of obscuration by surrounding gas and dust.
Quasars are powered by gas funneled to galaxy centers, but for a large part of
the accretion lifetime are heavily obscured by the large gas densities powering
accretion. In this phase, starbursts and black hole growth are fueled but the
quasar is buried. Eventually, feedback from accretion energy disperses
surrounding gas, creating a window in which the black hole is observable
optically as a quasar, until accretion rates drop below those required to
maintain a quasar luminosity. We model this process and measure the unobscured
and intrinsic quasar lifetimes in a hydrodynamical simulation of a major galaxy
merger. The source luminosity is determined from the black hole accretion rate,
calculated from local gas properties. We calculate the column density of
hydrogen to the source along multiple lines of sight and use these column
densities and gas metallicities to determine B-band attenuation of the source.
Defining the observable quasar lifetime as the total time with an observed
B-band luminosity above some limit L_B,min, we find lifetimes ~10-20 Myr for
L_B,min=10^11 L_sun (M_B=-23), in good agreement with observationally
determined quasar lifetimes. This is significantly smaller than the intrinsic
lifetime ~100 Myr obtained if attenuation is neglected. The ratio of observed
to intrinsic lifetime is also strong function of both the limiting luminosity
and the observed frequency.Comment: 5 pages, 4 figures, submitted to ApJ Letter
Parallel Analysis: a Method for Determining Significant Principal Components
Numerous ecological studies use Principal Components Analysis (PCA) for exploratory analysis and data reduction. Determination of the number of components to retain is the most crucial problem confronting the researcher when using PCA. An incorrect choice may lead to the underextraction of components, but commonly results in overextraction. Of several methods proposed to determine the significance of principal components, Parallel Analysis (PA) has proven consistently accurate in determining the threshold for significant components, variable loadings, and analytical statistics when decomposing a correlation matrix. In this procedure, eigenvalues from a data set prior to rotation are compared with those from a matrix of random values of the same dimensionality (p variables and n samples). PCA eigenvalues from the data greater than PA eigenvalues from the corresponding random data can be retained. All components with eigenvalues below this threshold value should be considered spurious. We illustrate Parallel Analysis on an environmental data set.
We reviewed all articles utilizing PCA or Factor Analysis (FA) from 1987 to 1993 from Ecology, Ecological Monographs, Journal of Vegetation Science and Journal of Ecology. Analyses were first separated into those PCA which decomposed a correlation matrix and those PCA which decomposed a covariance matrix. Parallel Analysis (PA) was applied for each PCA/FA found in the literature. Of 39 analyses (in 22 articles), 29 (74.4%) considered no threshold rule, presumably retaining interpretable components. According to the PA results, 26 (66.7%) overextracted components. This overextraction may have resulted in potentially misleading interpretation of spurious components. It is suggested that the routine use of PA in multivariate ordination will increase confidence in the results and reduce the subjective interpretation of supposedly objective methods
A Plea for Risk
Mountaineering is a dangerous activity. For many mountaineers, part of its very attraction is the risk, the thrill of danger. Yet mountaineers are often regarded as reckless or even irresponsible for risking their lives. In this paper, we offer a defence of risk-taking in mountaineering. Our discussion is organised around the fact that mountaineers and non-mountaineers often disagree about how risky mountaineering really is. We hope to cast some light on the nature of this disagreement â and to argue that mountaineering may actually be worthwhile because of the risks it involves. Section 1 introduces the disagreement and, in doing so, separates out several different notions of risk. Sections 2â4 then consider some explanations of the disagreement, showing how a variety of phenomena can skew peopleâs risk judgements. Section 5 then surveys some recent statistics, to see whether these illuminate how risky mountaineering is. In light of these considerations, however, we suggest that the disagreement is best framed not simply in terms of how risky mountaineering is but whether the risks it does involve are justified. The remainder of the paper, sections 6â9, argues that risk-taking in mountaineering often is justified â and, moreover, that mountaineering can itself be justified (in part) by and because of the risks it involves
The Evolution of the M-sigma Relation
(Abridged) We examine the evolution of the black hole mass - stellar velocity
dispersion (M-sigma) relation over cosmic time using simulations of galaxy
mergers that include feedback from supermassive black hole growth. We consider
mergers of galaxies varying the properties of the progenitors to match those
expected at redshifts z=0-6. We find that the slope of the resulting M-sigma
relation is the same at all redshifts considered. For the same feedback
efficiency that reproduces the observed amplitude of the M-sigma relation at
z=0, there is a weak redshift-dependence to the normalization that results from
an increasing velocity dispersion for a given galactic stellar mass. We develop
a formalism to connect redshift evolution in the M-sigma relation to the
scatter in the local relation at z=0. We show that the scatter in the local
relation places severe constraints on the redshift evolution of both the
normalization and slope of the M-sigma relation. Furthermore, we demonstrate
that cosmic downsizing introduces a black hole mass-dependent dispersion in the
M-sigma relation and that the skewness of the distribution about the locally
observed M-sigma relation is sensitive to redshift evolution in the
normalization and slope. In principle, these various diagnostics provide a
method for differentiating between theories for producing the M-sigma relation.
In agreement with existing constraints, our simulations imply that hierarchical
structure formation should produce the relation with small intrinsic scatter.Comment: 12 pages, 6 figures, version accepted by Ap
A Theoretical Interpretation of the Black Hole Fundamental Plane
We examine the origin and evolution of correlations between properties of
supermassive black holes (BHs) and their host galaxies using simulations of
major galaxy mergers, including the effects of gas dissipation, cooling, star
formation, and BH accretion and feedback. We demonstrate that the simulations
predict the existence of a BH 'fundamental plane' (BHFP), of the form M_BH
sigma^(3.0+-0.3)*R_e^(0.43+-0.19) or M_BH
M_bulge^(0.54+-0.17)*sigma^(2.2+-0.5), similar to relations found
observationally. The simulations indicate that the BHFP can be understood
roughly as a tilted intrinsic correlation between BH mass and spheroid binding
energy, or the condition for feedback coupling to power a pressure-driven
outflow. While changes in halo circular velocity, merger orbital parameters,
progenitor disk redshifts and gas fractions, ISM gas pressurization, and other
parameters can drive changes in e.g. sigma at fixed M_bulge, and therefore
changes in the M_BH-sigma or M_BH-M_bulge relations, the BHFP is robust. Given
the empirical trend of decreasing R_e for a given M_bulge at high redshift, the
BHFP predicts that BHs will be more massive at fixed M_bulge, in good agreement
with recent observations. This evolution in the structural properties of merger
remnants, to smaller R_e and larger sigma (and therefore larger M_BH,
conserving the BHFP) at a given M_bulge, is driven by the fact that bulge
progenitors have characteristically larger gas fractions at high redshifts.
Adopting the observed evolution of disk gas fractions with redshift, our
simulations predict the observed trends in both R_e(M_bulge) and M_BH(M_bulge).Comment: 22 pages, 19 figures, replaced with version accepted to ApJ.
Companion paper to arXiv:0707.400
Black Holes in Galaxy Mergers: Evolution of Quasars
Based on numerical simulations of gas-rich galaxy mergers, we discuss a model
in which quasar activity is tied to the self-regulated growth of supermassive
black holes in galaxies. Nuclear inflow of gas attending a galaxy collision
triggers a starburst and feeds black hole growth, but for most of the duration
of the starburst, the black hole is heavily obscured by surrounding gas and
dust which limits the visibility of the quasar, especially at optical and UV
wavelengths. Eventually, feedback energy from accretion heats the gas and
expels it in a powerful wind, leaving a 'dead quasar'. Between buried and dead
phases there is a window during which the galaxy would be seen as a luminous
quasar. Because the black hole mass, radiative output, and distribution of
obscuring gas and dust all evolve strongly with time, the duration of this
phase of observable quasar activity depends on both the waveband and imposed
luminosity threshold. We determine the observed and intrinsic lifetimes as a
function of luminosity and frequency, and calculate observable lifetimes ~10
Myr for bright quasars in the optical B-band, in good agreement with empirical
estimates and much smaller than the black hole growth timescales ~100 Myr,
naturally producing a substantial population of 'buried' quasars. However,
observed and intrinsic energy outputs converge in the IR and hard X-ray bands
as attenuation becomes weaker and chances of observation greatly increase. We
obtain the distribution of column densities along sightlines in which the
quasar is seen above a given luminosity, and find that our result agrees
remarkably well with observed estimates of the column density distribution from
the SDSS for appropriate luminosity thresholds. (Abridged)Comment: 12 pages, 7 figures. Accepted for publication in ApJ (September
2005). Replacement with minor revisions from referee repor
Polyanionic Ligand Platforms for Methyl- and Dimethylaluminum Arrays
Trimethylaluminum
finds widespread applications in chemical and materials synthesis,
most prominently in its partially hydrolyzed form of methylalumoxane
(MAO), which is used as a cocatalyst in the polymerization of olefins.
This work investigates the sequential reactions of trimethylaluminum
with hexaprotic phosphazenes (RNH)6P3N3 (=XH6) equipped with substituents R of varied
steric bulk including tert-butyl (1H6), cyclohexyl (2H6), isopropyl (3H6), isobutyl (4H6), ethyl
(5H6), propyl (6H6), methyl (7H6), and benzyl (8H6). Similar to MAO, the resulting complexes of polyanionic
phosphazenates [XHn]nâ6 accommodate multinuclear arrays
of [AlMe2]+ and [AlMe]2+. Reactions
were monitored by 31P NMR spectroscopy, and structures
were determined by single-crystal X-ray diffraction. They included 1H4(AlMe2)2, 1H3(AlMe2)3, 2H3(AlMe2)3, 3(AlMe2)4AlMe, 4HÂ(AlMe2)5, 4(AlMe2)6, {5HÂ(AlMe2)4}2AlMe, 5(AlMe2)6, 6(AlMe2)6, {7(AlMe2)4AlMe}2, and 8(AlMe2)6. The study shows that subtle
variations of the steric properties of the R groups influence the
reaction pathways, levels of aggregation, and fluxional behavior.
While [AlMe2]+ is the primary product of the
metalation, [AlMe]2+ is utilized to alleviate overcrowding
or to aid aggregation. At the later stages of metalation, [AlMe2]+ groups start to scramble around congested sites.
The ligands proved to be very robust and extremely flexible, offering
a unique platform to study complex multinuclear metal arrangements
The Evolution in the Faint-End Slope of the Quasar Luminosity Function
(Abridged) Based on numerical simulations of galaxy mergers that incorporate
black hole (BH) growth, we predict the faint end slope of the quasar luminosity
function (QLF) and its evolution with redshift. Our simulations have yielded a
new model for quasar lifetimes where the lifetime depends on both the
instantaneous and peak quasar luminosities. This motivates a new interpretation
of the QLF in which the bright end consists of quasars radiating at nearly
their peak luminosities, but the faint end is mostly made up of quasars in less
luminous phases of evolution. The faint-end QLF slope is then determined by the
faint-end slope of the quasar lifetime for quasars with peak luminosities near
the observed break. We determine this slope from the quasar lifetime as a
function of peak luminosity, based on a large set of simulations spanning a
wide variety of host galaxy, merger, BH, and ISM gas properties. Brighter peak
luminosity (higher BH mass) systems undergo more violent evolution, and expel
and heat gas more rapidly in the final stages of quasar evolution, resulting in
a flatter faint-end slope (as these objects fall below the observed break in
the QLF more rapidly). Therefore, as the QLF break luminosity moves to higher
luminosities with increasing redshift, implying a larger typical quasar peak
luminosity, the faint-end QLF slope flattens. From the quasar lifetime as a
function of peak luminosity and this interpretation of the QLF, we predict the
faint-end QLF slope and its evolution with redshift in good agreement with
observations. Although BHs grow anti-hierarchically (with lower-mass BHs formed
primarily at lower redshifts), the observed change in slope and differential or
luminosity dependent density evolution in the QLF is completely determined by
the luminosity-dependent quasar lifetime and physics of quasar feedback.Comment: 13 pages, 4 figures, submitted to ApJ (Replacement with minor
revisions and changed sign convention
- âŠ