4,321 research outputs found

    Adaptive Group Coordination and Role Differentiation

    Get PDF
    Many real world situations (potluck dinners, academic departments, sports teams, corporate divisions, committees, seminar classes, etc.) involve actors adjusting their contributions in order to achieve a mutually satisfactory group goal, a win-win result. However, the majority of human group research has involved situations where groups perform poorly because task constraints promote either individual maximization behavior or diffusion of responsibility, and even successful tasks generally involve the propagation of one correct solution through a group. Here we introduce a group task that requires complementary actions among participants in order to reach a shared goal. Without communication, group members submit numbers in an attempt to collectively sum to a randomly selected target number. After receiving group feedback, members adjust their submitted numbers until the target number is reached. For all groups, performance improves with task experience, and group reactivity decreases over rounds. Our empirical results provide evidence for adaptive coordination in human groups, and as the coordination costs increase with group size, large groups adapt through spontaneous role differentiation and self-consistency among members. We suggest several agent-based models with different rules for agent reactions, and we show that the empirical results are best fit by a flexible, adaptive agent strategy in which agents decrease their reactions when the group feedback changes. The task offers a simple experimental platform for studying the general problem of group coordination while maximizing group returns, and we distinguish the task from several games in behavioral game theory

    Macronutrient intakes and cardio metabolic risk factors in high BMI African American children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to evaluate the relationship between intakes of energy-providing macronutrients, and markers of cardio metabolic risk factors in high BMI African American (AA) children.</p> <p>Methods</p> <p>A cross sectional analysis of a sample of 9-11 year old children (n = 80) with BMI greater then the 85<sup>th </sup>percentile. Fasting hematological and biochemical measurements, and blood pressure were measured as selected markers of cardio metabolic risk factors and their relationships to dietary intakes determined.</p> <p>Results</p> <p>After adjusting for gender, pubertal stage and waist circumference (WC), multivariate regression analysis showed that higher total energy intakes (when unadjusted for source of energy) were associated with higher plasma concentrations of intermediate density lipoprotein cholesterol (IDL-C) and very low density lipoprotein cholesterol (VLDL-C). Higher intakes of carbohydrate energy (fat and protein held constant) were associated with higher IDL-C, VLDL-C, triglycerides (TG) and homeostasis model assessment of insulin resistance (HOMA-IR). Higher intakes of fat (carbohydrate and protein held constant), however, were associated with lower IDL-C; and higher protein intakes (fat and carbohydrate held constant) were associated with lower HOMA-IR.</p> <p>Conclusion</p> <p>The specific macronutrients that contribute energy are significantly associated with a wide range of cardio metabolic risk factors in high BMI AA children. Increases in carbohydrate energy were associated with undesirable effects including increases in several classes of plasma lipids and HOMA-IR. Increases in protein energy were associated with the desirable effect of reduced HOMA-IR, and fat energy intakes were associated with the desirable effect of reduced IDL-C. This analysis suggests that the effect of increased energy on risk of developing cardio metabolic risk factors is influenced by the source of that energy.</p

    The Cultural Production of Health Inequalities: A Cross-Sectional, Multilevel Examination of 52 Countries

    Get PDF
    In a 2001 report, the U.S. National Institutes of Health called for more integration of the social sciences into health-related research, including research guided by theories and methods that take social and cultural systems into consideration. Based on a theoretical framework that integrates Hofstede\u27s cultural dimensions with sociological theory, the authors used multilevel modeling to explore the association of culture with structural inequality and health disparities. Their results support the idea that cultural dimensions and social structure, along with economic development, may account for much of the cross-national variation in the distribution of health inequalities. Sensitivity tests also suggest that an interaction between culture and social structure may confound the relationship between income inequality and health. It is necessary to identify important cultural and social structural characteristics before we can achieve an understanding of the complex, dynamic systems that affect health, and develop culturally sensitive interventions and policies. This study takes a step toward identifying some of the relevant cultural and structural influences. More research is needed to explore the pathways leading from the sociocultural environment to health inequalities

    Is the association between optimistic cardiovascular risk perceptions and lower rates of cardiovascular disease mortality explained by biomarkers of systemic inflammation or endothelial function? A case-cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More optimistic perceptions of cardiovascular disease risk are associated with substantively lower rates of cardiovascular death among men. It remains unknown whether this association represents causality (i.e. perception leads to actions/conditions that influence cardiovascular disease occurrence) or residual confounding by unmeasured factors that associate with risk perceptions and with physiological processes that promote cardiovascular disease (i.e. inflammation or endothelial dysfunction).</p> <p>Purpose</p> <p>To evaluate whether previously unmeasured biological markers of inflammation or endothelial dysregulation confound the observed association between cardiovascular disease risk perceptions and cardiovascular disease outcomes;</p> <p>Methods</p> <p>We conducted a nested case-cohort study among community-dwelling men from Southeastern New England (USA) who were interviewed between 1989 and 1990 as part of the Pawtucket Heart Health Program. We measured C-reactive protein (CRP) and Vascular Endothelial Growth Factor (VEGF) levels from stored sera for a random sample of the parent cohort (control sample, n = 127) and all cases of cardiovascular death observed through 2005 (case sample, n = 44). We evaluated potential confounding using stratified analyses and logistic regression modeling.</p> <p>Results</p> <p>Optimistic ratings of risk associated with lower odds of dying from cardiovascular causes among men (OR = 0.39, 95% CI = 0.17, 0.91). Neither CRP nor VEGF confounded these findings.</p> <p>Conclusions</p> <p>The strong cardio-protective association between optimistic ratings of cardiovascular disease risk and lower rates of cardiovascular mortality among men is not confounded by baseline biomarkers of systemic inflammation or endothelial dysfunction.</p

    Increased accuracy of ligand sensing by receptor internalization

    Full text link
    Many types of cells can sense external ligand concentrations with cell-surface receptors at extremely high accuracy. Interestingly, ligand-bound receptors are often internalized, a process also known as receptor-mediated endocytosis. While internalization is involved in a vast number of important functions for the life of a cell, it was recently also suggested to increase the accuracy of sensing ligand as the overcounting of the same ligand molecules is reduced. Here we show, by extending simple ligand-receptor models to out-of-equilibrium thermodynamics, that internalization increases the accuracy with which cells can measure ligand concentrations in the external environment. Comparison with experimental rates of real receptors demonstrates that our model has indeed biological significance.Comment: 9 pages, 4 figures, accepted for publication in Physical Review

    Spectral Typing of Late Type Stellar Companions to Young Stars from Low Dispersion Near-Infrared Integral Field Unit Data

    Get PDF
    We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra with a resolution of R\sim30. The reduced, extracted, and calibrated spectra were compared to template spectra from the IRTF spectral library. With this comparison we test the accuracy and consistency of spectral type determination with the low-resolution near-infrared spectra from P1640. Additionally, we determine effective temperature and surface gravity of the companions by fitting synthetic spectra calculated with the PHOENIX model atmosphere code. We also present several new epochs of astrometry of each of the systems. Together these data increase our knowledge and understanding of the stellar make up of these systems. In addition to the astronomical results, the analysis presented helps validate the Project 1640 data reduction and spectral extraction processes and the utility of low-resolution, near-infrared spectra for characterizing late-type companions in multiple systems.Comment: Accepted to Astronomical Journal, 25 pages, 8 figure

    Software development for continuous-gas-flow AMS

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266 (2008): 2233-2237, doi:10.1016/j.nimb.2008.03.001.The National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) Facility at Woods Hole Oceanographic Institution is presently completing installation of a novel continuous-flow AMS system. A multi-year development of an AMS microwave gas ion source in collaboration with Atomic Energy Canada Limited (AECL), Chalk River, has preceded this final step of an implementation that is expected to add a new dimension to 14C AMS. National Instruments, NIM, and CAMAC modules have been programmed with LabVIEW on a Windows XP platform to form the basis for data acquisition. In this paper we discuss possible applications and include simulations of expected data acquisition scenarios like real-time AMS analysis of chromatograms. Particular attention is given to issues of synchronization between rapidly changing input amplitudes and signal processing cycles in hardware and software.This work is supported by the United States National Science Foundation under Cooperative Agreement OCE-0228996
    corecore