37,512 research outputs found

    Tests of CPT and Lorentz symmetry from muon anomalous magnetic dipole moment

    Full text link
    We derive the relativistic factor for splitting of the gg-factors of a fermion and its anti-fermion partner, which is important for placing constraints on dimension-5, CPTCPT-odd and Lorentz-invariance-violating interactions from experiments performed in a cyclotron. From existing data, we extract limits (1σ\sigma) on the coupling strengths of the temporal component, f0f^0, of a background field (including the field amplitude), which is responsible for such gg-factor splitting, with an electron, proton, and muon: fe0<2.3×1012 μB|f^0_e|< 2.3 \times 10^{-12} ~\mu_{\textrm{B}}, fp0<4×109 μB|f^0_p|< 4 \times 10^{-9} ~\mu_{\textrm{B}}, and fμ0<8×1011 μB|f^0_\mu|< 8 \times 10^{-11} ~\mu_{\textrm{B}}, respectively, in the laboratory frame. From existing data, we also extract limits on the coupling strengths of the spatial components, dd^{\perp}, of related dimension-5 interactions of a background field with an electron, proton, neutron, and muon: de109 μB| {d}_e^{\perp} | \lesssim 10^{-9} ~\mu_{\textrm{B}}, dp109 μB| {d}_p^{\perp} | \lesssim 10^{-9} ~\mu_{\textrm{B}}, dn1010 μB| {d}_n^{\perp} | \lesssim 10^{-10} ~\mu_{\textrm{B}}, and dμ109 μB| {d}_\mu^{\perp} | \lesssim 10^{-9} ~\mu_{\textrm{B}}, respectively, in the laboratory frame.Comment: 6 pages. Minor corrections and new references adde

    The Toxoplasma gondii plastid replication and repair enzyme complex, PREX

    Get PDF
    A plastid-like organelle, the apicoplast, is essential to the majority of medically and veterinary important apicomplexan protozoa including Toxoplasma gondii and Plasmodium. The apicoplast contains multiple copies of a 35 kb genome, the replication of which is dependent upon nuclear-encoded proteins that are imported into the organelle. In P. falciparum an unusual multi-functional gene, pfprex, was previously identified and inferred to encode a protein with DNA primase, DNA helicase and DNA polymerase activities. Herein, we report the presence of a prex orthologue in T. gondii. The protein is predicted to have a bi-partite apicoplast targeting sequence similar to that demonstrated on the PfPREX polypeptide, capable of delivering marker proteins to the apicoplast. Unlike the P. falciparum gene that is devoid of introns, the T. gondii prex gene carries 19 introns, which are spliced to produce a contiguous mRNA. Bacterial expression of the polymerase domain reveals the protein to be active. Consistent with the reported absence of a plastid in Cryptosporidium species, in silico analysis of their genomes failed to demonstrate an orthologue of prex. These studies indicate that prex is conserved across the plastid-bearing apicomplexans and may play an important role in the replication of the plastid genome

    Thermal OH (1667/65 MHz) Absorption and Nonthermal OH (1720 MHz) Emission Towards the W28 Supernova Remnant

    Get PDF
    The W28 supernova remnant is an excellent prototype for observing shocked gas resulting from the interaction of supernova remnants (SNRs) and adjacent molecular clouds (MCs). We present two new signatures of shocked molecular gas in this remnant. One is the detection of main-line extended OH (1667 MHz) absorption with broad linewidths. The column density of OH estimated from the optical depth profiles is consistent with a theoretical model in which OH is formed behind a C-type shock front. The second is the detection of extended, weak OH (1720 MHz) line emission with narrow linewidth distributed throughout the shocked region of W28. These give observational support to the idea that compact maser sources delineate the brightest component of a much larger region of main line OH absorption and nonthermal OH (1720 MHz) emission tracing the global structure of shocked molecular gas. Main line OH (1665/67) absorption and extended OH (1720 MHz) emission line studies can serve as powerful tools to detect SNR-MC interaction even when bright OH (1720 MHz) masers are absent.Comment: 14 pages, 3 figures, one table, to appear in ApJ (Jan 10, 2003

    Dark matter scattering on electrons: Accurate calculations of atomic excitations and implications for the DAMA signal

    Full text link
    We revisit the WIMP-type dark matter scattering on electrons that results in atomic ionization, and can manifest itself in a variety of existing direct-detection experiments. Unlike the WIMP-nucleon scattering, where current experiments probe typical interaction strengths much smaller than the Fermi constant, the scattering on electrons requires a much stronger interaction to be detectable, which in turn requires new light force carriers. We account for such new forces explicitly, by introducing a mediator particle with scalar or vector couplings to dark matter and to electrons. We then perform state of the art numerical calculations of atomic ionization relevant to the existing experiments. Our goals are to consistently take into account the atomic physics aspect of the problem (e.g., the relativistic effects, which can be quite significant), and to scan the parameter space: the dark matter mass, the mediator mass, and the effective coupling strength, to see if there is any part of the parameter space that could potentially explain the DAMA modulation signal. While we find that the modulation fraction of all events with energy deposition above 2 keV in NaI can be quite significant, reaching ~50%, the relevant parts of the parameter space are excluded by the XENON10 and XENON100 experiments

    The effect of Mach number on unstable disturbances in shock/boundary-layer interactions

    Full text link
    The effect of Mach number on the growth of unstable disturbances in a boundary layer undergoing a strong interaction with an impinging oblique shock wave is studied by direct numerical simulation and linear stability theory (LST). To reduce the number of independent parameters, test cases are arranged so that both the interaction location Reynolds number (based on the distance from the plate leading edge to the shock impingement location for a corresponding inviscid flow) and the separation bubble length Reynolds number are held fixed. Small-amplitude disturbances are introduced via both white-noise and harmonic forcing and, after verification that the disturbances are convective in nature, linear growth rates are extracted from the simulations for comparison with parallel flow LST and solutions of the parabolized stability equations (PSE). At Mach 2.0, the oblique modes are dominant and consistent results are obtained from simulation and theory. At Mach 4.5 and Mach 6.85, the linear Navier-Stokes results show large reductions in disturbance energy at the point where the shock impinges on the top of the separated shear layer. The most unstable second mode has only weak growth over the bubble region, which instead shows significant growth of streamwise structures. The two higher Mach number cases are not well predicted by parallel flow LST, which gives frequencies and spanwise wave numbers that are significantly different from the simulations. The PSE approach leads to good qualitative predictions of the dominant frequency and wavenumber at Mach 2.0 and 4.5, but suffers from reduced accuracy in the region immediately after the shock impingement. Three-dimensional Navier-Stokes simulations are used to demonstrate that at finite amplitudes the flow structures undergo a nonlinear breakdown to turbulence. This breakdown is enhanced when the oblique-mode disturbances are supplemented with unstable Mack modes

    CDM, Feedback and the Hubble Sequence

    Get PDF
    We have performed TreeSPH simulations of galaxy formation in a standard LCDM cosmology, including effects of star formation, energetic stellar feedback processes and a meta-galactic UV field, and obtain a mix of disk, lenticular and elliptical galaxies. The disk galaxies are deficient in angular momentum by only about a factor of two compared to observed disk galaxies. The stellar disks have approximately exponential surface density profiles, and those of the bulges range from exponential to r^{1/4}, as observed. The bulge-to-disk ratios of the disk galaxies are consistent with observations and likewise are their integrated B-V colours, which have been calculated using stellar population synthesis techniques. Furthermore, we can match the observed I-band Tully-Fisher (TF) relation, provided that the mass-to-light ratio of disk galaxies, (M/L_I), is about 0.8. The ellipticals and lenticulars have approximately r^{1/4} stellar surface density profiles, are dominated by non-disklike kinematics and flattened due to non-isotropic stellar velocity distributions, again consistent with observations.Comment: 6 pages, incl. 4 figs. To appear in the proceedings of the EuroConference "The Evolution of Galaxies: II - Basic Building Blocks", Ile de La Reunion (France), 16-21 October 2001 (Slightly updated version). A much more comprehensive paper about this work with links to pictures of some of the galaxies can be found at http://babbage.sissa.it/abs/astro-ph/020436

    Space Station Freedom environmental control and life support system phase 3 simplified integrated test detailed report

    Get PDF
    A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test

    Limiting P-odd interactions of cosmic fields with electrons, protons and neutrons

    Full text link
    We propose methods for extracting limits on the strength of P-odd interactions of pseudoscalar and pseudovector cosmic fields with electrons, protons and neutrons. Candidates for such fields are dark matter (including axions) and dark energy, as well as several more exotic sources described by standard-model extensions. Calculations of parity nonconserving amplitudes and atomic electric dipole moments induced by these fields are performed for H, Li, Na, K, Rb, Cs, Ba+, Tl, Dy, Fr, and Ra+. From these calculations and existing measurements in Dy, Cs and Tl, we constrain the interaction strengths of the parity-violating static pseudovector cosmic field to be 7*10^(-15) GeV with an electron, and 3*10^(-8) GeV with a proton.Comment: 6 pages, 1 figur

    Heavy Baryons in a Quark Model

    Full text link
    A quark model is applied to the spectrum of baryons containing heavy quarks. The model gives masses for the known heavy baryons that are in agreement with experiment, but for the doubly-charmed baryon Cascade_{cc}, the model prediction is too heavy. Mixing between the Cascade_Q and Cascade_Q^\prime states is examined and is found to be small for the lowest lying states. In contrast with this, mixing between the Cascade_{bc} and Cascade_{bc}^\prime states is found to be large, and the implication of this mixing for properties of these states is briefly discussed. We also examine heavy-quark spin-symmetry multiplets, and find that many states in the model can be placed in such multiplets. We compare our predictions with those of a number of other authors.Comment: Version published in International Journal of Modern Physics
    corecore