37,512 research outputs found
Tests of CPT and Lorentz symmetry from muon anomalous magnetic dipole moment
We derive the relativistic factor for splitting of the -factors of a
fermion and its anti-fermion partner, which is important for placing
constraints on dimension-5, -odd and Lorentz-invariance-violating
interactions from experiments performed in a cyclotron. From existing data, we
extract limits (1) on the coupling strengths of the temporal component,
, of a background field (including the field amplitude), which is
responsible for such -factor splitting, with an electron, proton, and muon:
, , and ,
respectively, in the laboratory frame. From existing data, we also extract
limits on the coupling strengths of the spatial components, , of
related dimension-5 interactions of a background field with an electron,
proton, neutron, and muon: , , , and , respectively, in the laboratory frame.Comment: 6 pages. Minor corrections and new references adde
The Toxoplasma gondii plastid replication and repair enzyme complex, PREX
A plastid-like organelle, the apicoplast, is essential to the majority of medically and veterinary important apicomplexan protozoa including Toxoplasma gondii and Plasmodium. The apicoplast contains multiple copies of a 35 kb genome, the replication of which is dependent upon nuclear-encoded proteins that are imported into the organelle. In P. falciparum an unusual multi-functional gene, pfprex, was previously identified and inferred to encode a protein with DNA primase, DNA helicase and DNA polymerase activities. Herein, we report the presence of a prex orthologue in T. gondii. The protein is predicted to have a bi-partite apicoplast targeting sequence similar to that demonstrated on the PfPREX polypeptide, capable of delivering marker proteins to the apicoplast. Unlike the P. falciparum gene that is devoid of introns, the T. gondii prex gene carries 19 introns, which are spliced to produce a contiguous mRNA. Bacterial expression of the polymerase domain reveals the protein to be active. Consistent with the reported absence of a plastid in Cryptosporidium species, in silico analysis of their genomes failed to demonstrate an orthologue of prex. These studies indicate that prex is conserved across the plastid-bearing apicomplexans and may play an important role in the replication of the plastid genome
Thermal OH (1667/65 MHz) Absorption and Nonthermal OH (1720 MHz) Emission Towards the W28 Supernova Remnant
The W28 supernova remnant is an excellent prototype for observing shocked gas
resulting from the interaction of supernova remnants (SNRs) and adjacent
molecular clouds (MCs). We present two new signatures of shocked molecular gas
in this remnant. One is the detection of main-line extended OH (1667 MHz)
absorption with broad linewidths. The column density of OH estimated from the
optical depth profiles is consistent with a theoretical model in which
OH is formed behind a C-type shock front. The second is the detection of
extended, weak OH (1720 MHz) line emission with narrow linewidth distributed
throughout the shocked region of W28. These give observational support to the
idea that compact maser sources delineate the brightest component of a much
larger region of main line OH absorption and nonthermal OH (1720 MHz) emission
tracing the global structure of shocked molecular gas. Main line OH (1665/67)
absorption and extended OH (1720 MHz) emission line studies can serve as
powerful tools to detect SNR-MC interaction even when bright OH (1720 MHz)
masers are absent.Comment: 14 pages, 3 figures, one table, to appear in ApJ (Jan 10, 2003
Dark matter scattering on electrons: Accurate calculations of atomic excitations and implications for the DAMA signal
We revisit the WIMP-type dark matter scattering on electrons that results in
atomic ionization, and can manifest itself in a variety of existing
direct-detection experiments. Unlike the WIMP-nucleon scattering, where current
experiments probe typical interaction strengths much smaller than the Fermi
constant, the scattering on electrons requires a much stronger interaction to
be detectable, which in turn requires new light force carriers. We account for
such new forces explicitly, by introducing a mediator particle with scalar or
vector couplings to dark matter and to electrons. We then perform state of the
art numerical calculations of atomic ionization relevant to the existing
experiments. Our goals are to consistently take into account the atomic physics
aspect of the problem (e.g., the relativistic effects, which can be quite
significant), and to scan the parameter space: the dark matter mass, the
mediator mass, and the effective coupling strength, to see if there is any part
of the parameter space that could potentially explain the DAMA modulation
signal. While we find that the modulation fraction of all events with energy
deposition above 2 keV in NaI can be quite significant, reaching ~50%, the
relevant parts of the parameter space are excluded by the XENON10 and XENON100
experiments
The effect of Mach number on unstable disturbances in shock/boundary-layer interactions
The effect of Mach number on the growth of unstable disturbances in a boundary layer undergoing a strong interaction with an impinging oblique shock wave is studied by direct numerical simulation and linear stability theory (LST). To reduce the number of independent parameters, test cases are arranged so that both the interaction location Reynolds number (based on the distance from the plate leading edge to the shock impingement location for a corresponding inviscid flow) and the separation bubble length Reynolds number are held fixed. Small-amplitude disturbances are introduced via both white-noise and harmonic forcing and, after verification that the disturbances are convective in nature, linear growth rates are extracted from the simulations for comparison with parallel flow LST and solutions of the parabolized stability equations (PSE). At Mach 2.0, the oblique modes are dominant and consistent results are obtained from simulation and theory. At Mach 4.5 and Mach 6.85, the linear Navier-Stokes results show large reductions in disturbance energy at the point where the shock impinges on the top of the separated shear layer. The most unstable second mode has only weak growth over the bubble region, which instead shows significant growth of streamwise structures. The two higher Mach number cases are not well predicted by parallel flow LST, which gives frequencies and spanwise wave numbers that are significantly different from the simulations. The PSE approach leads to good qualitative predictions of the dominant frequency and wavenumber at Mach 2.0 and 4.5, but suffers from reduced accuracy in the region immediately after the shock impingement. Three-dimensional Navier-Stokes simulations are used to demonstrate that at finite amplitudes the flow structures undergo a nonlinear breakdown to turbulence. This breakdown is enhanced when the oblique-mode disturbances are supplemented with unstable Mack modes
CDM, Feedback and the Hubble Sequence
We have performed TreeSPH simulations of galaxy formation in a standard LCDM
cosmology, including effects of star formation, energetic stellar feedback
processes and a meta-galactic UV field, and obtain a mix of disk, lenticular
and elliptical galaxies. The disk galaxies are deficient in angular momentum by
only about a factor of two compared to observed disk galaxies. The stellar
disks have approximately exponential surface density profiles, and those of the
bulges range from exponential to r^{1/4}, as observed. The bulge-to-disk ratios
of the disk galaxies are consistent with observations and likewise are their
integrated B-V colours, which have been calculated using stellar population
synthesis techniques. Furthermore, we can match the observed I-band
Tully-Fisher (TF) relation, provided that the mass-to-light ratio of disk
galaxies, (M/L_I), is about 0.8. The ellipticals and lenticulars have
approximately r^{1/4} stellar surface density profiles, are dominated by
non-disklike kinematics and flattened due to non-isotropic stellar velocity
distributions, again consistent with observations.Comment: 6 pages, incl. 4 figs. To appear in the proceedings of the
EuroConference "The Evolution of Galaxies: II - Basic Building Blocks", Ile
de La Reunion (France), 16-21 October 2001 (Slightly updated version). A much
more comprehensive paper about this work with links to pictures of some of
the galaxies can be found at http://babbage.sissa.it/abs/astro-ph/020436
Space Station Freedom environmental control and life support system phase 3 simplified integrated test detailed report
A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test
Limiting P-odd interactions of cosmic fields with electrons, protons and neutrons
We propose methods for extracting limits on the strength of P-odd
interactions of pseudoscalar and pseudovector cosmic fields with electrons,
protons and neutrons. Candidates for such fields are dark matter (including
axions) and dark energy, as well as several more exotic sources described by
standard-model extensions. Calculations of parity nonconserving amplitudes and
atomic electric dipole moments induced by these fields are performed for H, Li,
Na, K, Rb, Cs, Ba+, Tl, Dy, Fr, and Ra+. From these calculations and existing
measurements in Dy, Cs and Tl, we constrain the interaction strengths of the
parity-violating static pseudovector cosmic field to be 7*10^(-15) GeV with an
electron, and 3*10^(-8) GeV with a proton.Comment: 6 pages, 1 figur
Heavy Baryons in a Quark Model
A quark model is applied to the spectrum of baryons containing heavy quarks.
The model gives masses for the known heavy baryons that are in agreement with
experiment, but for the doubly-charmed baryon Cascade_{cc}, the model
prediction is too heavy. Mixing between the Cascade_Q and Cascade_Q^\prime
states is examined and is found to be small for the lowest lying states. In
contrast with this, mixing between the Cascade_{bc} and Cascade_{bc}^\prime
states is found to be large, and the implication of this mixing for properties
of these states is briefly discussed. We also examine heavy-quark spin-symmetry
multiplets, and find that many states in the model can be placed in such
multiplets. We compare our predictions with those of a number of other authors.Comment: Version published in International Journal of Modern Physics
- …