21 research outputs found

    Techno-Economic Modelling Of A Utility-Scale Redox Flow Battery System

    Get PDF
    A one-dimensional numerical model has been developed for redox flow battery (RFB) systems with bipolar flow-by electrodes, soluble redox couples, and recirculating batch operation. Overpotential losses were estimated from the Butler-Volmer equation, accounting for mass-transfer. The model predicted the variation in concentration and current along the electrode and determined the charge-discharge efficiency, energy density, and power density. The model was validated using data obtained from a pilot-scale polysulphide-bromine (PSB) system commercialized by Regenesys Technologies (UK) Ltd. The model was able to predict cell performance, species concentration, current distribution, and electrolyte deterioration for the Regenesys system. Based on 2006 prices, the system was predicted to make a net loss of 0.45 p kWh−1 at an optimum current density of 500 A m−2 and an energy efficiency of 64%. The economic viability was found to be strongly sensitive to the kinetics, capital costs, and the electrical energy price differential

    Influence of Flow Field Design on Zinc Deposition and Performance in a Zinc-Iodide Flow Battery

    Get PDF
    Among the aqueous redox flow battery systems, redox chemistries using a zinc negative electrode have a relatively high energy density, but the potential of achieving high power density and long cycle life is hindered by dendrite growth at the anode. In this study, a new cell design with a narrow gap between electrode and membrane was applied in a zinc-iodide flow battery. In this design, some of the electrolyte flows over the electrode surface and a fraction of the flow passes through the porous felt electrode in the direction of current flow. The flow battery was tested under constant current density over 40 cycles, and the efficiency, discharge energy density, and power density of the battery were significantly improved compared to conventional flow field designs. The power density obtained in this study is one of the highest power densities reported for the zinc-iodide battery. The morphology of the zinc deposition was studied using scanning electron microscopy and optical profilometry. It was found that the flow through the electrode led to a thinner zinc deposit with lower roughness on the surface of the electrode, in comparison to the case where there was no flow through the electrode. In addition, inhibition of dendrite formation enabled operation at a higher range of current density. Ex situ tomographic measurements were used to image the zinc deposited on the surface and inside the porous felt. Volume rendering of graphite felt from X-ray computed tomography images showed that in the presence of flow through the electrode, more zinc deposition occurred inside the porous felt, resulting in a compact and thinner surface deposit, which may enable higher battery capacity and improved performance

    The effect of non-uniform compression on the performance of polymer electrolyte fuel cells

    Get PDF
    The mechanical compression used in the construction of PEFCs improves effective current collection and gas sealing, however it results in structural deformation of the MEA, affecting reactant transport with adverse consequences for the electrochemical performance of the cell. The present study uses X-ray CT to characterise MEA under compression and determine effective properties of the porous domain. The comprehensive modelling approach couples a structural model of the MEA under compression to a multi-phase, non-isothermal electrochemical performance model. Liquid water saturation in the cathode domain that promotes mass transport losses is validated with neutron radiography. Here, the structural model considers the fuel cell stacking process at three compressions and highlights the non-uniform distribution of porosity and effective properties under non-uniform cell compression, affecting localised current distribution and water transport. An increase in compression showed a negligible effect on the performance in the activation region, the performance was marginally improved in the ohmic region and significantly affected in mass transport region, promoting cell flooding. The non-uniform compression effects are found to be important considerations for robust modelling studies as it increases the nonuniformity in localised current, temperature and flooding that would further alter the durability of the fuel cell

    Search for excited electrons singly produced in proton–proton collisions at \sqrt{s} = 13 TeV with the ALAS experiment at the LHC

    Get PDF
    A search for excited electrons produced in pp collisions at s√ = 13 TeV via a contact interaction qq¯→ee∗ is presented. The search uses 36.1 fb −1 of data collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider. Decays of the excited electron into an electron and a pair of quarks ( eqq¯ ) are targeted in final states with two electrons and two hadronic jets, and decays via a gauge interaction into a neutrino and a W boson ( νW ) are probed in final states with an electron, missing transverse momentum, and a large-radius jet consistent with a hadronically decaying W boson. No significant excess is observed over the expected backgrounds. Upper limits are calculated for the pp→ee∗→eeqq¯ and pp→ee∗→eνW production cross sections as a function of the excited electron mass me∗ at 95% confidence level. The limits are translated into lower bounds on the compositeness scale parameter Λ of the model as a function of me∗ . For me∗<0.5 TeV , the lower bound for Λ is 11 TeV . In the special case of me∗=Λ , the values of me∗<4.8 TeV are excluded. The presented limits on Λ are more stringent than those obtained in previous searches

    Erratum to: Measurement of the W boson polarisation in tt^{¯} events from pp collisions at √s = 8 TeV in the lepton + jets channel with Atlas

    Get PDF
    1 Erratum to: Eur. Phys. J. C (2017) 77:264 [https://doi.org/10.1140/epjc/s10052-017-4819-4]. The original article can be found online at [https://doi.org/10.1140/epjc/s10052-017-4819-4]

    Measurement of the W boson polarisation in [Formula: see text] events from pp collisions at [Formula: see text] = 8 TeV in the lepton + jets channel with ATLAS.

    Get PDF
    This paper presents a measurement of the polarisation of W bosons from [Formula: see text] decays, reconstructed in events with one high-[Formula: see text] lepton and at least four jets. Data from pp collisions at the LHC were collected at [Formula: see text] = 8 TeV and correspond to an integrated luminosity of 20.2 fb[Formula: see text]. The angle [Formula: see text] between the b-quark from the top quark decay and a direct W boson decay product in the W boson rest frame is sensitive to the W boson polarisation. Two different W decay products are used as polarisation analysers: the charged lepton and the down-type quark for the leptonically and hadronically decaying W boson, respectively. The most precise measurement of the W boson polarisation via the distribution of [Formula: see text] is obtained using the leptonic analyser and events in which at least two of the jets are tagged as b-quark jets. The fitted fractions of longitudinal, left- and right-handed polarisation states are [Formula: see text], [Formula: see text] and [Formula: see text], and are the most precisely measured W boson polarisation fractions to date. Limits on anomalous couplings of the Wtb vertex are set

    Chromium removal using a porous carbon felt cathode

    No full text
    corecore