46,754 research outputs found

    High surface area, emulsion-templated carbon foams by activation of polyHIPEs derived from Pickering emulsions.

    Get PDF
    Carbon foams displaying hierarchical porosity and excellent surface areas of >1400 m2/g can be produced by the activation of macroporous poly(divinylbenzene). Poly(divinylbenzene) was synthesized from the polymerization of the continuous, but minority, phase of a simple high internal phase Pickering emulsion. By the addition of KOH, chemical activation of the materials is induced during carbonization, producing Pickering-emulsion templated carbon foams, or carboHIPEs, with tailorable macropore diameters and surface areas almost triple that of those previously reported. The retention of the customizable, macroporous open-cell structure of the poly(divinylbenzene) precursor and the production of a large degree of microporosity during activation leads to tailorable carboHIPEs with excellent surface areas

    Muon g-2: Review of Theory and Experiment

    Get PDF
    A review of the experimental and theoretical determinations of the anomalous magnetic moment of the muon is given. The anomaly is defined by a=(g-2)/2, where the Land\'e g-factor is the proportionality constant that relates the spin to the magnetic moment. For the muon, as well as for the electron and tauon, the anomaly a differs slightly from zero (of order 10^{-3}) because of radiative corrections. In the Standard Model, contributions to the anomaly come from virtual `loops' containing photons and the known massive particles. The relative contribution from heavy particles scales as the square of the lepton mass over the heavy mass, leading to small differences in the anomaly for e, \mu, and \tau. If there are heavy new particles outside the Standard Model which couple to photons and/or leptons, the relative effect on the muon anomaly will be \sim (m_\mu/ m_e)^2 \approx 43\times 10^3 larger compared with the electron anomaly. Because both the theoretical and experimental values of the muon anomaly are determined to high precision, it is an excellent place to search for the effects of new physics, or to constrain speculative extensions to the Standard Model. Details of the current theoretical evaluation, and of the series of experiments that culminates with E821 at the Brookhaven National Laboratory are given. At present the theoretical and the experimental values are known with a similar relative precision of 0.5 ppm. There is, however, a 3.4 standard deviation difference between the two, strongly suggesting the need for continued experimental and theoretical studyComment: 103 pages, 57 figures, submitted to Reports on Progress in Physics Final version as published, several minor clarifications to text and a number of references were correcte

    On the period ratio P<sub>1</sub>/2P<sub>2</sub> in the oscillations of coronal loops

    Get PDF
    &lt;p&gt;Aims. With strong evidence of fast and slow magnetoacoustic modes arising in the solar atmosphere there is scope for improved determinations of coronal parameters through coronal seismology. Of particular interest is the ratio P&lt;sub&gt;1&lt;/sub&gt;/2P&lt;sub&gt;2&lt;/sub&gt;between the period P&lt;sub&gt;1&lt;/sub&gt; of the fundamental mode and the period P&lt;sub&gt;2&lt;/sub&gt; of its first harmonic; in an homogeneous medium this ratio is one, but in a more complex configuration it is shifted to lower values.&lt;/p&gt; &lt;p&gt;Methods. We consider analytically the effects on the different magnetohydrodynamic modes of structuring and stratification, pointing out that transverse or longitudinal structuring or gravitational stratification modifies the ratio P&lt;sub&gt;1&lt;/sub&gt;/2P&lt;sub&gt;2&lt;/sub&gt;.&lt;/p&gt; &lt;p&gt;Results. The deviations caused by gravity and structure are studied for the fast and slow modes. Structure along the loop is found to be the dominant effect.&lt;/p&gt; &lt;p&gt;Conclusions. The departure of P&lt;sub&gt;1&lt;/sub&gt;/2P&lt;sub&gt;2&lt;/sub&gt; from unity can be used as a seismological tool in the corona. We apply our technique to the observations by Verwichte et al. (2004), deducing the density scale height in a coronal loop.&lt;/p&gt

    Environmental Effects On Drosophila Brain Development And Learning

    Full text link
    Brain development and behavior are sensitive to a variety of environmental influences including social interactions and physicochemical stressors. Sensory input in situ is a mosaic of both enrichment and stress, yet little is known about how multiple environmental factors interact to affect brain anatomical structures, circuits and cognitive function. In this study, we addressed these issues by testing the individual and combined effects of sub-adult thermal stress, larval density and early-adult living spatial enrichment on brain anatomy and olfactory associative learning in adult Drosophila melanogaster. In response to heat stress, the mushroom bodies (MBs) were the most volumetrically impaired among all of the brain structures, an effect highly correlated with reduced odor learning performance. However, MBs were not sensitive to either larval culture density or early-adult living conditions. Extreme larval crowding reduced the volume of the antennal lobes, optic lobes and central complex. Neither larval crowding nor early-adult spatial enrichment affected olfactory learning. These results illustrate that various brain structures react differently to environmental inputs, and that MB development and learning are highly sensitive to certain stressors (pre-adult hyperthermia) and resistant to others (larval crowding). © 2018. Published by The Company of Biologists Ltd

    Is intra-abdominal hypertension a missing factor that drives multiple organ dysfunction syndrome?

    Get PDF
    In a recent issue of Critical Care, Cheng and colleagues conducted a rabbit model study that demonstrated that intra-abdominal hypertension (IAH) may damage both gut anatomy and function. With only 6 hours of IAH at 25 mmHg, these authors observed an 80% reduction in mucosal blood flow, an exponential increase in mucosal permeability, and erosion and necrosis of the jejunal villi. Such dramatic findings should remind all caring for the critically ill that IAH may severely damage the normal gut barrier functions and thus may be reasonably expected to facilitate bacterial and mediator translocation. The potential contribution of IAH as a confounding factor in the efficacy of selective decontamination of the digestive tract should be considered

    Multiplicities and a dimension inequality for unmixed modules

    Get PDF
    We prove the following result, which is motivated by the recent work of Kurano and Roberts on Serre's positivity conjecture. Assume that (R,m) is a local ring with finitely-generated module M such that R/ann(M) is quasi-unmixed and contains a field, and that p and q are prime ideals in the support of M such that p is analytically unramified, p+q is m-primary and e(M_p)=e(M). Then dim(R/p)+dim(R/q)\leq dim(M). We also prove a similar theorem in a special case of mixed characteristic. Finally, we provide several examples to explain our assumptions as well as an example of a noncatenary, local domain R with prime ideal p such that e(R_p)>e(R)=1

    Analytical determination of coronal parameters using the period ratio P<sub>1</sub>/2P<sub>2</sub>

    Get PDF
    &lt;p&gt;Context. In transverse coronal loop oscillations, two periodicities have been measured simultaneously and are interpreted as the fundamental kink mode (with period P1) and the first harmonic (with period P2). Deviations of the period ratio P1/2P2 from unity provide information about the extent of longitudinal structuring within the loop.&lt;/p&gt; &lt;p&gt;Aims. Here we develop an analytical approximation that describes the shift in P1/2P2 in terms of the ratio L/Λc of the length 2L of a coronal loop and the density scale height Λc.&lt;/p&gt; &lt;p&gt;Methods. We study the MHD wave equations in a low β plasma using the thin tube approximation. Disturbances are described by a differential equation which may be solved for various equilibrium density profiles, obtaining dispersion relations in terms of Bessel functions. These dispersion relations may be used to obtain analytical approximations to the periods P1 and P2. We also present a variational approach to determining the period ratio and show how the WKB method may be used.&lt;/p&gt; &lt;p&gt;Results. Analytical approximations to the period ratio P1/2P2 are used to shed light on the magnitude of longitudinal structuring in a loop, leading to a determination of the density scale height. We apply our formula to the observations in Verwichte et al. (2004) and Van Doorsselaere et al. (2007), obtaining the coronal density scale height.&lt;/p&gt; &lt;p&gt;Conclusions. Our simple formula and approximate approaches highlight a useful analytical tool for coronal seismology. We demonstrate that P1/2P2 is linked to the density scale height, with no need for estimates of other external parameters. Given the accuracy of current observations, our formula provides a convenient means of determining density scale heights.&lt;/p&gt

    Flavourful hadronic physics

    Full text link
    We review theoretical approaches to form factors that arise in heavy-meson decays and are hadronic expressions of non-perturbative QCD. After motivating their origin in QCD factorisation, we retrace their evolution from quark-model calculations to non-perturbative QCD techniques with an emphasis on formulations of truncated heavy-light amplitudes based upon Dyson-Schwinger equations. We compare model predictions exemplarily for the B\to\pi transition form factor and discuss new results for the g_{D*D\pi} coupling in the hadronic D* decay.Comment: Based on a talk given at Light Cone 2009: Relativistic Hadronic And Particle Physics, 8-13 July 2009, Sao Jose dos Campos, Sao Paulo, Brazi

    The first confirmed superoutburst of the SU UMa type dwarf nova SDSS J083931.35+282824.0

    Get PDF
    We report unfiltered CCD photometry of the first confirmed superoutburst of the recently discovered dwarf nova, SDSS J083931.35+282824.0 in April 2010. From a quiescence magnitude of ~19.8 it rose to 14.0, an outburst amplitude of at least 5.8 magnitudes. Only the plateau phase of the outburst was observed during which superhumps with peak-to-peak amplitude of up to 0.28 magnitudes were present, confirming this to be an SU UMa type dwarf nova. The mean superhump period was Psh = 0.07836(2) during the first 3 days and this subsequently decreased to 0.07800(3) d. Analysis of the data revealed tentative evidence for an orbital period Porb = 0.07531(25) d. The fractional superhump period excess was epsilon = 0.039(6), which is consistent with other dwarf novae of similar orbital period.Comment: 12 pages, 3 figures. Accepted for publication in the Journal of the British Astronomical Associatio
    corecore