11 research outputs found

    Casimir-like force arising from quantum fluctuations in a slow-moving dilute Bose-Einstein condensate

    Full text link
    We calculate a force due to zero-temperature quantum fluctuations on a stationary object in a moving superfluid flow. We model the object by a localized potential varying only in the flow direction and model the flow by a three-dimensional weakly interacting Bose-Einstein condensate at zero temperature. We show that this force exists for any arbitrarily small flow velocity and discuss the implications for the stability of superfluid flow.Comment: v3: revised discussion of toroidal geometry; replotted figure; minor editorial changes; quantitative and qualitative conclusions remain unchange

    Casimir forces in Bose-Einstein condensates: finite size effects in three-dimensional rectangular cavities

    Full text link
    The Casimir force due to {\it thermal} fluctuations (or pseudo-Casimir force) was previously calculated for the perfect Bose gas in the slab geometry for various boundary conditions. The Casimir pressure due to {\it quantum} fluctuations in a weakly-interacting dilute Bose-Einstein condensate (BEC) confined to a parallel plate geometry was recently calculated for Dirichlet boundary conditions. In this paper we calculate the Casimir energy and pressure due to quantum fluctuations in a zero-temperature homogeneous weakly-interacting dilute BEC confined to a parallel plate geometry with periodic boundary conditions and include higher-order corrections which we refer to as Bogoliubov corrections. The leading order term is identified as the Casimir energy of a massless scalar field moving with wave velocity equal to the speed of sound in the BEC. We then obtain the leading order Casimir pressure in a general three-dimensional rectangular cavity of arbitrary lengths and obtain the finite-size correction to the parallel plate scenario.Comment: 12 pages; no figures; v.2: version accepted for publication in JSTAT v.3: references adde

    Casimir Energy of a BEC: From Moderate Interactions to the Ideal Gas

    Full text link
    Considering the Casimir effect due to phononic excitations of a weakly interacting dilute {BEC}, we derive a re-normalized expression for the zero temperature Casimir energy Ec\mathcal{E}_c of a {BEC} confined to a parallel plate geometry with periodic boundary conditions. Our expression is formally equivalent to the free energy of a bosonic field at finite temperature, with a nontrivial density of modes that we compute analytically. As a function of the interaction strength, Ec\mathcal{E}_c smoothly describes the transition from the weakly interacting Bogoliubov regime to the non-interacting ideal {BEC}. For the weakly interacting case, Ec\mathcal{E}_c reduces to leading order to the Casimir energy due to zero-point fluctuations of massless phonon modes. In the limit of an ideal Bose gas, our result correctly describes the Casimir energy going to zero.Comment: 12 pages, 3 figures, accepted for publication in JPA. New version with corrected typos and an additional appendi

    Multidimensional cut-off technique, odd-dimensional Epstein zeta functions and Casimir energy of massless scalar fields

    Full text link
    Quantum fluctuations of massless scalar fields represented by quantum fluctuations of the quasiparticle vacuum in a zero-temperature dilute Bose-Einstein condensate may well provide the first experimental arena for measuring the Casimir force of a field other than the electromagnetic field. This would constitute a real Casimir force measurement - due to quantum fluctuations - in contrast to thermal fluctuation effects. We develop a multidimensional cut-off technique for calculating the Casimir energy of massless scalar fields in dd-dimensional rectangular spaces with qq large dimensions and dqd-q dimensions of length LL and generalize the technique to arbitrary lengths. We explicitly evaluate the multidimensional remainder and express it in a form that converges exponentially fast. Together with the compact analytical formulas we derive, the numerical results are exact and easy to obtain. Most importantly, we show that the division between analytical and remainder is not arbitrary but has a natural physical interpretation. The analytical part can be viewed as the sum of individual parallel plate energies and the remainder as an interaction energy. In a separate procedure, via results from number theory, we express some odd-dimensional homogeneous Epstein zeta functions as products of one-dimensional sums plus a tiny remainder and calculate from them the Casimir energy via zeta function regularization.Comment: 42 pages, 3 figures. v.2: typos corrected to match published versio

    Casimir force on interacting Bose-Einstein condensate

    Full text link
    We have presented an analytic theory for the Casimir force on a Bose-Einstein condensate (BEC) which is confined between two parallel plates. We have considered Dirichlet boundary conditions for the condensate wave function as well as for the phonon field. We have shown that, the condensate wave function (which obeys the Gross-Pitaevskii equation) is responsible for the mean field part of Casimir force, which usually dominates over the quantum (fluctuations) part of the Casimir force.Comment: Accepted in Journal of Physics B: Atomic, Molecular and Optical Physic

    The Cerenkov effect revisited: from swimming ducks to zero modes in gravitational analogs

    Full text link
    We present an interdisciplinary review of the generalized Cerenkov emission of radiation from uniformly moving sources in the different contexts of classical electromagnetism, superfluid hydrodynamics, and classical hydrodynamics. The details of each specific physical systems enter our theory via the dispersion law of the excitations. A geometrical recipe to obtain the emission patterns in both real and wavevector space from the geometrical shape of the dispersion law is discussed and applied to a number of cases of current experimental interest. Some consequences of these emission processes onto the stability of condensed-matter analogs of gravitational systems are finally illustrated.Comment: Lecture Notes at the IX SIGRAV School on "Analogue Gravity" in Como, Italy from May 16th-21th, 201
    corecore