1,086 research outputs found

    Using Financial Incentives and Improving Information to Increase Labour Market Success: A Non-Parametric Evaluation of the 'Want2Work' Programme

    Get PDF
    The `Want2Work´ programme was designed to help individuals back into work. This article uses propensity score matching to evaluate the success of a policy that cannot otherwise be evaluated using standard parametric techniques. Using a range of estimation methods, sub-samples and types of job, the scheme was successful. Our most conservative estimates indicate that participants were 4-7 percentage points more likely to find employment than a control group of non-treated job-seekers. Effects were even stronger for Incapacity Benefit recipients. Moreover, there is little evidence that participants were placed in low quality or temporary jobs

    Stability of Negative Image Equilibria in Spike-Timing Dependent Plasticity

    Full text link
    We investigate the stability of negative image equilibria in mean synaptic weight dynamics governed by spike-timing dependent plasticity (STDP). The neural architecture of the model is based on the electrosensory lateral line lobe (ELL) of mormyrid electric fish, which forms a negative image of the reafferent signal from the fish's own electric discharge to optimize detection of external electric fields. We derive a necessary and sufficient condition for stability, for arbitrary postsynaptic potential functions and arbitrary learning rules. We then apply the general result to several examples of biological interest.Comment: 13 pages, revtex4; uses packages: graphicx, subfigure; 9 figures, 16 subfigure

    Effect of anharmonicities in the critical number of trapped condensed atoms with attractive two-body interaction

    Full text link
    We determine the quantitative effect, in the maximum number of particles and other static observables, due to small anharmonic terms added to the confining potential of an atomic condensed system with negative two-body interaction. As an example of how a cubic or quartic anharmonic term can affect the maximum number of particles, we consider the trap parameters and the results given by Roberts et al. [Phys. Rev. Lett. 86, 4211 (2001)]. However, this study can be easily transferred to other trap geometries to estimate anharmonic effects.Comment: Total of 5 pages, 3 figures and 1 table. To appear in Phys. Rev.

    Finite temperature scaling theory for the collapse of Bose-Einstein condensate

    Full text link
    We show how to apply the scaling theory in an inhomogeneous system like harmonically trapped Bose condensate at finite temperatures. We calculate the temperature dependence of the critical number of particles by a scaling theory within the Hartree-Fock approximation and find that there is a dramatic increase in the critical number of particles as the condensation point is approached.Comment: Published online [6 pages, 3 figures

    Collapse dynamics of trapped Bose-Einstein condensates

    Full text link
    We analyze the implosion and subsequent explosion of a trapped condensate after the scattering length is switched to a negative value. Our results compare very well qualitatively and fairly well quantitatively with the results of recent experiments at JILA.Comment: 4 pages, 3 figure

    Mean-field analysis of collapsing and exploding Bose-Einstein condensates

    Full text link
    The dynamics of collapsing and exploding trapped Bose-Einstein condensat es caused by a sudden switch of interactions from repulsive to attractive a re studied by numerically integrating the Gross-Pitaevskii equation with atomic loss for an axially symmetric trap. We investigate the decay rate of condensates and the phenomena of bursts and jets of atoms, and compare our results with those of the experiments performed by E. A. Donley {\it et al.} [Nature {\bf 412}, 295 (2001)]. Our study suggests that the condensate decay and the burst production is due to local intermittent implosions in the condensate, and that atomic clouds of bursts and jets are coherent. We also predict nonlinear pattern formation caused by the density instability of attractive condensates.Comment: 7 pages, 8 figures, axi-symmetric results are adde

    Critical number of atoms for attractive Bose-Einstein condensates with cylindrically symmetrical traps

    Full text link
    We calculated, within the Gross-Pitaevskii formalism, the critical number of atoms for Bose-Einstein condensates with two-body attractive interactions in cylindrical traps with different frequency ratios. In particular, by using the trap geometries considered by the JILA group [Phys. Rev. Lett. 86, 4211 (2001)], we show that the theoretical maximum critical numbers are given approximately by Nc=0.55(l0/a)N_c = 0.55 ({l_0}/{|a|}). Our results also show that, by exchanging the frequencies ωz\omega_z and ωρ\omega_\rho, the geometry with ωρ<ωz\omega_\rho < \omega_z favors the condensation of larger number of particles. We also simulate the time evolution of the condensate when changing the ground state from a=0a=0 to a<0a<0 using a 200ms ramp. A conjecture on higher order nonlinear effects is also added in our analysis with an experimental proposal to determine its signal and strength.Comment: (4 pages, 2 figures) To appear in Physical Review

    Characterization of elastic scattering near a Feshbach resonance in rubidium 87

    Full text link
    The s-wave scattering length for elastic collisions between 87Rb atoms in the state |f,m_f>=|1,1> is measured in the vicinity of a Feshbach resonance near 1007 G. Experimentally, the scattering length is determined from the mean-field driven expansion of a Bose-Einstein condensate in a homogeneous magnetic field. The scattering length is measured as a function of the magnetic field and agrees with the theoretical expectation. The position and the width of the resonance are determined to be 1007.40 G and 0.20 G, respectively.Comment: 4 pages, 2 figures minor revisions: added Ref.6, included error bar

    Stability of the trapped nonconservative Gross-Pitaevskii equation with attractive two-body interaction

    Full text link
    The dynamics of a nonconservative Gross-Pitaevskii equation for trapped atomic systems with attractive two-body interaction is numerically investigated, considering wide variations of the nonconservative parameters, related to atomic feeding and dissipation. We study the possible limitations of the mean field description for an atomic condensate with attractive two-body interaction, by defining the parameter regions where stable or unstable formation can be found. The present study is useful and timely considering the possibility of large variations of attractive two-body scattering lengths, which may be feasible in recent experiments.Comment: 6 pages, 5 figures, submitted to Physical Review

    Bose-Einstein condensate collapse: a comparison between theory and experiment

    Full text link
    We solve the Gross-Pitaevskii equation numerically for the collapse induced by a switch from positive to negative scattering lengths. We compare our results with experiments performed at JILA with Bose-Einstein condensates of Rb-85, in which the scattering length was controlled using a Feshbach resonance. Building on previous theoretical work we identify quantitative differences between the predictions of mean-field theory and the results of the experiments. Besides the previously reported difference between the predicted and observed critical atom number for collapse, we also find that the predicted collapse times systematically exceed those observed experimentally. Quantum field effects, such as fragmentation, that might account for these discrepancies are discussed.Comment: 4 pages, 2 figure
    corecore