34 research outputs found

    IDPpi:Protein-protein interaction analyses of human intrinsically disordered proteins

    Get PDF
    Intrinsically disordered proteins (IDPs) are characterized by the lack of a fixed tertiary structure and are involved in the regulation of key biological processes via binding to multiple protein partners. IDPs are malleable, adapting to structurally different partners, and this flexibility stems from features encoded in the primary structure. The assumption that universal sequence information will facilitate coverage of the sparse zones of the human interactome motivated us to explore the possibility of predicting protein-protein interactions (PPIs) that involve IDPs based on sequence characteristics. We developed a method that relies on features of the interacting and non-interacting protein pairs and utilizes machine learning to classify and predict IDP PPIs. Consideration of both sequence determinants specific for conformational organizations and the multiplicity of IDP interactions in the training phase ensured a reliable approach that is superior to current state-of-the-art methods. By applying a strict evaluation procedure, we confirm that our method predicts interactions of the IDP of interest even on the proteome-scale. This service is provided as a web tool to expedite the discovery of new interactions and IDP functions with enhanced efficiency. © 2018 The Author(s)

    A Wt1-Controlled Chromatin Switching Mechanism Underpins Tissue-Specific Wnt4 Activation and Repression

    Get PDF
    SummaryWt1 regulates the epithelial-mesenchymal transition (EMT) in the epicardium and the reverse process (MET) in kidney mesenchyme. The mechanisms underlying these reciprocal functions are unknown. Here, we show in both embryos and cultured cells that Wt1 regulates Wnt4 expression dichotomously. In kidney cells, Wt1 recruits Cbp and p300 as coactivators; in epicardial cells it enlists Basp1 as a corepressor. Surprisingly, in both tissues, Wt1 loss reciprocally switches the chromatin architecture of the entire Ctcf-bounded Wnt4 locus, but not the flanking regions; we term this mode of action “chromatin flip-flop.” Ctcf and cohesin are dispensable for Wt1-mediated chromatin flip-flop but essential for maintaining the insulating boundaries. This work demonstrates that a developmental regulator coordinates chromatin boundaries with the transcriptional competence of the flanked region. These findings also have implications for hierarchical transcriptional regulation in development and disease

    A core promoter element downstream of the TATA box that is recognized by TFIIB

    No full text
    We have defined a core promoter element downstream of the TATA box that is recognized by TFIIB. This involves a DNA-binding domain in TFIIB that is distinct from the helix–turn–helix motif (which recognizes an element upstream of the TATA box). The TFIIB recognition element we describe regulates transcription in a manner that is promoter context-dependent, particularly with respect to the TFIIB recognition element that is located upstream of the TATA box. Thus TFIIB can recognize two distinct sequence elements that flank the TATA box, employing independent DNA-binding motifs and cooperating in the regulation of transcription

    Activator-mediated disruption of sequence-specific DNA contacts by the general transcription factor TFIIB

    No full text
    The transcription factor TFIIB plays a central role in preinitiation complex assembly, providing a bridge between promoter-bound TFIID and RNA Polymerase II. TFIIB possesses sequence-specific DNA-binding ability and interacts with the TFIIB-recognition element (BRE), present in many promoters. Here we show that the BRE suppresses the basal level of transcription elicited by a core promoter, which increases the amplitude of transcriptional stimulation in the presence of an activator protein. Further, we find that an activator can disrupt the TFIIB–BRE interaction within a promoter-bound complex. Our results reveal a novel function for activators in the modulation of core promoter recognition by TFIIB
    corecore