3,609 research outputs found
Recurrent Neural Filters: Learning Independent Bayesian Filtering Steps for Time Series Prediction
Despite the recent popularity of deep generative state space models, few
comparisons have been made between network architectures and the inference
steps of the Bayesian filtering framework -- with most models simultaneously
approximating both state transition and update steps with a single recurrent
neural network (RNN). In this paper, we introduce the Recurrent Neural Filter
(RNF), a novel recurrent autoencoder architecture that learns distinct
representations for each Bayesian filtering step, captured by a series of
encoders and decoders. Testing this on three real-world time series datasets,
we demonstrate that the decoupled representations learnt not only improve the
accuracy of one-step-ahead forecasts while providing realistic uncertainty
estimates, but also facilitate multistep prediction through the separation of
encoder stages
DeepLOB: Deep Convolutional Neural Networks for Limit Order Books
We develop a large-scale deep learning model to predict price movements from
limit order book (LOB) data of cash equities. The architecture utilises
convolutional filters to capture the spatial structure of the limit order books
as well as LSTM modules to capture longer time dependencies. The proposed
network outperforms all existing state-of-the-art algorithms on the benchmark
LOB dataset [1]. In a more realistic setting, we test our model by using one
year market quotes from the London Stock Exchange and the model delivers a
remarkably stable out-of-sample prediction accuracy for a variety of
instruments. Importantly, our model translates well to instruments which were
not part of the training set, indicating the model's ability to extract
universal features. In order to better understand these features and to go
beyond a "black box" model, we perform a sensitivity analysis to understand the
rationale behind the model predictions and reveal the components of LOBs that
are most relevant. The ability to extract robust features which translate well
to other instruments is an important property of our model which has many other
applications.Comment: 12 pages, 9 figure
Modelling strong interactions and longitudinally polarized vector boson scattering
We study scattering of the electroweak gauge bosons in 5D warped models.
Within two different models we determine the precise manner in which the Higgs
boson and the vector resonances ensure the unitarity of longitudinal vector
boson scattering. We identify three separate scales that determine the dynamics
of the scattering process in all cases. For a quite general background geometry
of 5D, these scales can be linked to a simple functional of the warp factor.
The models smoothly interpolate between a `composite' Higgs limit and a
Higgsless limit. By holographic arguments, these models provide an effective
description of vector boson scattering in 4D models with a strongly coupled
electroweak breaking sector.Comment: 30 pages, no figure
- …