2,463 research outputs found
How Do Tor Users Interact With Onion Services?
Onion services are anonymous network services that are exposed over the Tor
network. In contrast to conventional Internet services, onion services are
private, generally not indexed by search engines, and use self-certifying
domain names that are long and difficult for humans to read. In this paper, we
study how people perceive, understand, and use onion services based on data
from 17 semi-structured interviews and an online survey of 517 users. We find
that users have an incomplete mental model of onion services, use these
services for anonymity and have varying trust in onion services in general.
Users also have difficulty discovering and tracking onion sites and
authenticating them. Finally, users want technical improvements to onion
services and better information on how to use them. Our findings suggest
various improvements for the security and usability of Tor onion services,
including ways to automatically detect phishing of onion services, more clear
security indicators, and ways to manage onion domain names that are difficult
to remember.Comment: Appeared in USENIX Security Symposium 201
Rapid oxygen diffusion during high temperature alteration of zircon
The mineral zircon through its isotopic and elemental signatures comprises the greatest archive recording the evolution of Earth’s continental crust. Recognising primary from secondary zircon compositional signatures is thus important for the accurate interpretation of this archive. We report two examples of metasedimentary rocks from high-grade shear zones within the Southern Granulite Belt of India, where anomalously high and homogeneous oxygen isotope signatures indicate disturbance of this isotopic system. Utilising the combined U-Pb-Hf-O and trace element signatures from these zircon grains, we postulate that fluid-assisted alteration has led to complete resetting of the oxygen isotope signatures. This case study presents a rarely observed natural example of potentially fast diffusion of oxygen under hydrous conditions. Given the pervasive nature of fluid interaction within high-grade and highly deformed rocks, we expect that such isotopic disturbance might be more common to nature than is currently reported. A lack of correlation between isotopic disturbance with cathodoluminescence or Th/U values, suggests that these altered zircon grains would not clearly be classified as metamorphic, in which case they would be expected to yield primary compositions. Caution is therefore advised when using detrital δ18O zircon compilations without a high level of scrutiny for primary versus secondary compositions
Geochronology and Stable Isotope Analysis of Fracture-Fill and Karst Mineralization Reveal Sub-Surface Paleo-Fluid Flow and Microbial Activity of the COSC-1 Borehole, Scandinavian Caledonides
The deep biosphere hosted in fractured rocks within the upper continental crust is one of the least understood and studied ecological realms on Earth. Scarce knowledge of ancient life and paleo-fluid flow within this realm is owing to the lack of deep drilling into the crust. Here we apply microscale high spatial-resolution analytical techniques to fine-grained secondary minerals in a deep borehole (COSC-1) drilled into the Silurian-Devonian Scandinavian Caledonide mountain range in central Sweden. The aim is to detect and date signs of ancient microbial activity and low-temperature fluid circulation in micro-karsts (foliation-parallel dissolution cavities in the rock) and fractures at depth in the nappe system. Vein carbonates sampled at 684 to 2210 m show a decreased C isotope variability at depths below 1050 m; likely due to decreased influence of organic-C at great depth. Micro-karsts at 122–178 m depth feature at least two generations of secondary calcite and pyrite growth in the voids as shown by secondary ion mass spectrometry analytical transects within individual grains. The younger of these two precipitation phases shows 34S-depleted δ34Spyrite values (−19.8 ± 1.6‰ vs. Vienna-Canyon Diablo Troilite (V-CDT)) suggesting microbial sulfate reduction in situ. The calcite of this late phase can be distinguished from the older calcite by higher δ18Ocalcite values that correspond to precipitation from ambient meteoric water. The late stage calcite gave two separate laser ablation inductively coupled mass spectrometry-derived U-Pb ages (9.6 ± 1.3 Ma and 2.5 ± 0.2 Ma), marking a minimum age for widespread micro-karst formation within the nappe. Several stages of fluid flow and mineral precipitation followed karst formation; with related bacterial activity as late as the Neogene-Quaternary; in structures presently water conducting. The results show that our combined high spatial-resolution stable isotope and geochronology approach is suitable for characterizing paleo-fluid flow in micro-karst; in this case, of the crystalline crust comprising orogenic nappe units
Garnet–monazite rare earth element relationships in sub-solidus metapelites: a case study from Bhutan
A key aim of modern metamorphic geochronology is to constrain precise and accurate rates and timescales of tectonic processes. One promising approach in amphibolite and granulite-facies rocks links the geochronological information recorded in zoned accessory phases such as monazite to the pressure–temperature information recorded in zoned major rock-forming minerals such as garnet. Both phases incorporate rare earth elements (REE) as they crystallize and their equilibrium partitioning behaviour potentially provides a useful way of linking time to temperature. We report REE data from sub-solidus amphibolite-facies metapelites from Bhutan, where overlapping ages, inclusion relationships and Gd/Lu ratios suggest that garnet and monazite co-crystallized. The garnet–monazite REE relationships in these samples show a steeper pattern across the heavy (H)REE than previously reported. The difference between our dataset and the previously reported data may be due to a temperature-dependence on the partition coefficients, disequilibrium in either dataset, differences in monazite chemistry or the presence or absence of a third phase that competed for the available REE during growth. We urge caution against using empirically-derived partition coefficients from natural samples as evidence for, or against, equilibrium of REE-bearing phases until monazite–garnet partitioning behaviour is better constrained
Garnet stability during crustal melting: implications for chemical mohometry and secular change in arc magmatism and continent formation
Understanding how new felsic crust is formed and subsequently evolves through time is critical to identifying the geodynamic regimes that have dominated various parts of Earth history, and have important implications for feedbacks between the lithosphere and biosphere, such as controlling the influx of continental detritus into the oceans. In recent years, several trace element-based geochemical proxies have been proposed to allow determination of paleo-crustal thicknesses, which have been calibrated primarily using data collected from modern-day arcs. The application of these proxies through deep time has revealed surprising results, including the suggestion that the mid-Proterozoic continents were atypically thin compared to those in the Archean and the Phanerozoic; however, a range of factors may influence commonly cited trace element ratios (e.g. Sr/Y) rather than just crustal depth, leading to additional and unexpected magnitudes of uncertainty. Here we perform geochemical modelling to deduce the effect of variable bulk-rock composition and geothermal gradient on the trace element signature of felsic melts generated in arc systems. Using a range of protoliths representative of deep arc crust, the results show that considerable care must be taken when analysing simple trace element ratios of granitoid melts and making direct interpretations of the pressure of crystallisation. In particular, changes in geothermal gradients and differences in arc basalt composition impart strong controls on the relative stability of garnet and plagioclase during metamorphism and partial melting, and wide ranges of Sr/Y and La/Yb may be produced in derivative felsic melts produced at the same crustal depth. The interpretation of mid-Proterozoic continental arcs being atypically thin may instead be an artefact of underestimation of the active geothermal gradient at the time of magma formation, which acts to reduce Sr/Y and La/Yb ratios, even in normal thickness (∼35–40 km) crust. Furthermore, we argue that the potentially garnet-free residua during the formation of mid-Proterozoic felsic magmas points to crust formation without lower crustal foundering, and thus, that this commonly invoked paradigm for formation of the continental crust may only be applicable to certain periods of Earth history
Geochronology of granitic rocks from the Ruangwa region, southern Tanzania: links with NE Mozambique and beyond
New U–Pb zircon LA-ICP-MS data are presented for 4 granitoid bodies which intrude high grade gneisses of the previously unmapped Ruangwa region in southern Tanzania. The study area forms part of the late Neoproterozoic East African Orogen (EAO). The oldest unit, a coarse-grained migmatitic granitic orthogneiss gave an early Neoproterozoic (Tonian) crystallization age of 899 ± 9/16 Ma, which is similar to, but significantly younger than, Stenian-Tonian basement ages in areas relatively nearby. Crust of this age may extend as far north as the major Phanerozoic Selous Basin, north of which Archaean protolith ages predominate (the “Western Granulites”), except for the juvenile Neoproterozoic “Eastern Granulites”, which are not represented in the study area. To the south, the Tonian crust of the study area provides a tentative link with the Marrupa Complex in NE Mozambique. A granite pluton, dated at 650 ± 5/11 Ma is broadly coeval with the main Pan-African tectono-thermal event in the East African Orogen that is recorded across Tanzania north of the Selous Basin. Zircons in this granite contain inherited cores at ca. 770 Ma. This age is within the range of dates obtained from south and west of the study area from juvenile granitoid orthogneisses which might be related to a widespread, but poorly understood, early phase of Gondwana assembly along an Andean-type margin.
South of the study area, in NE Mozambique, the latest orogenic events occurred at ca. 550 Ma, and are sometimes attributed to the Ediacaran-aged “Kuunga Orogeny”. While metamorphic dates of this age have been recorded from the EAO north of the Selous Basin, magmatic rocks of this event have not been recognized in Tanzania. The two youngest granitoids of the present study are thus the first 500–600 Ma igneous rocks reported from the region. A weakly deformed very coarse-grained granite pluton was dated at 591 ± 4/10 Ma, while a very late, cross-cutting, undeformed granite dyke gave an intrusive age of 549 ± 4/9 Ma.
The granitoids ages presented in this study contain elements that are characteristic of the northern, Tanzania-Kenya, segment of the East African Orogen and of the southern, Mozambique, segment. The Tonian orthogneiss sample is typical of (but somewhat younger than) the Marrupa Complex of NE Mozambique. No zircon inheritance was recorded in the sample, typical of the juvenile Marrupa Complex. On the other hand, the ca. 650 Ma granite pluton has an age that is typical of the northern segment of the orogen; this is the first recorded granite of that age intruded into the Tonian-dominated crust of southern Tanzania or NE Mozambique. The two younger granites have provided dates that are typical of the southern segment of the orogen, and that of the Kuunga Orogen. The study area thus appears to represent an area of transitional crust straddling two complex and contrasting segments of the East African Orogen, with elements of both segments present and evidence for a ca. 770 Ma event which appears to be quite widespread and may relate to the early phases of Gondwana amalgamation in southern East Africa
Salt domes of the UAE and Oman: probing eastern Arabia
The emergent salt domes of the United Arab Emirates (UAE) have been investigated in detail and examples from central Oman have been studied for comparison. The salt domes contain exotic clasts of igneous, sedimentary and low-grade metamorphic rocks of the Arabian basement that have been brought to the surface from depths of over 8 km. The clasts thus provide an opportunity to examine the lithology, geochemical composition and age of the “basement” underlying this part of eastern Arabia, where no other outcrops are available for direct study. Five volcanic rocks give consistent latest Ediacaran U-Pb zircon crystallisation dates of ca. 560–545 Ma, with Neoproterozoic, Palaeoproterozoic and Neoarchaean ages of inherited zircons. These rocks, although strongly altered, preserve geochemical characteristics compatible with formation in a within-plate, extensional setting along the northern edge of Gondwana, adjacent to Prototethys. U-Pb analyses of detrital zircons in sedimentary and low-grade metamorphic rocks indicate deposition younger than ca. 597 Ma in UAE and <734 Ma in Oman. The two UAE sedimentary rocks may correlate with the Shuram and Khufai Formations of the Nafun Group (Huqf Supergroup) in Oman. Like the volcanic rocks, the two sedimentary samples from the UAE show derivation from the erosion of Neo-, Palaeoproterozoic and Neoarchaean sources. These sources could be from the Arabian basement itself or from other basement blocks such as those embedded in present-day Iran and Afghanistan, the precise whereabouts of which in Neoproterozoic times remains somewhat uncertain. The zircon age spectra of samples from the UAE show Neoproterozoic age peak characteristics of sources from both the western and eastern Arabian basement blocks, indicating that the two segments were juxtaposed by about 597 Ma, the maximum age of their deposition
- …