8 research outputs found
Nature in motion: The tuning of the visual system to the spatiotemporal properties of natural scenes
Natural scenes contain several statistical regularities despite their superficially diverse appearances (e.g., mountains, rainforests, deserts). First, they exhibit a unique distribution of luminance intensities decreasing across spatial frequency, known as the 1/fα amplitude spectrum (α â 1). Additionally, natural scenes share consistent geometric properties, comprising similar densities of structure across multiple scalesâa property classifying them as fractal (e.g., how the branching patterns of rivers and trees appear similar irrespective of scale). These two properties are intimately related and correlate strongly in natural scenes. However, research using thresholded noise images suggests that spatially, the human visual system is preferentially tuned to natural scene structure more so than 1/fα spectra. It is currently unclear whether this dependency on natural geometry extends to the temporal domain.We used a psychophysics task to measure discrimination sensitivity toward two types of synthetic noise movies: gray scale and thresholded (N = 60). Each movie type shared the same geometric properties (measured fractal D), but substantially differing spectral properties (measured α). In both space and time, we observe a characteristic dependency on stimulus structure across movie types, with sensitivity peaking for stimuli with natural geometry despite having altered 1/fα spectra. Although only measured behaviorally, our findings may developed to be sensitive to the most stable signal in our natural environmentâstructure (e.g., the structural properties of a tree are consistent from morning to night despite illumination changes across time points
Aesthetics and Psychological Effects of Fractal Based Design
Highly prevalent in nature, fractal patterns possess self-similar components that repeat at varying size scales. The perceptual experience of human-made environments can be impacted with inclusion of these natural patterns. Previous work has demonstrated consistent trends in preference for and complexity estimates of fractal patterns. However, limited information has been gathered on the impact of other visual judgments. Here we examine the aesthetic and perceptual experience of fractal âglobal-forestâ designs already installed in humanmade spaces and demonstrate how fractal pattern components are associated with positive psychological experiences that can be utilized to promote occupant wellbeing. These designs are composite fractal patterns consisting of individual fractal âtree-seedsâ which combine to create a âglobal fractal forest.â The local âtree-seedâ patterns, global configuration of tree-seed locations, and overall resulting âglobal-forestâ patterns have fractal qualities. These designs span multiple mediums yet are all intended to lower occupant stress without detracting from the function and overall design of the space. In this series of studies, we first establish divergent relationships between various visual attributes, with pattern complexity, preference, and engagement ratings increasing with fractal complexity compared to ratings of refreshment and relaxation which stay the same or decrease with complexity. Subsequently, we determine that the local constituent fractal (âtree-seedâ) patterns contribute to the perception of the overall fractal design, and address how to balance aesthetic and psychological effects (such as individual experiences of perceived engagement and relaxation) in fractal design installations. This set of studies demonstrates that fractal preference is driven by a balance between increased arousal (desire for engagement and complexity) and decreased tension (desire for relaxation or refreshment). Installations of these composite mid-high complexity âglobal-forestâ patterns consisting of âtree-seedâ components balance these contrasting needs, and can serve as a practical implementation of biophilic patterns in human-made environments to promote occupant wellbeing
Group for High Resolution Sea Surface Temperature (GHRSST) analysis fields inter-comparisonsâPart 2: Near real time web-based level 4 SST Quality Monitor (L4-SQUAM)
There are a growing number of level 4 (L4; gap-free gridded) sea surface temperature (SST) products generated by blending SST data from various sources which are available for use in a wide variety of operational and scientific applications. In most cases, each product has been developed for a specific user community with specific requirements guiding the design of the product. Consequently differences between products are implicit. In addition, anomalous atmospheric conditions, satellite operations and production anomalies may occur which can introduce additional differences. This paper describes a new web-based system called the L4 SST Quality Monitor (L4-SQUAM) developed to monitor the quality of L4 SST products.
L4-SQUAM intercompares thirteen L4 products with 1-day latency in an operational environment serving the needs of both L4 SST product users and producers. Relative differences between products are computed and visualized using maps, histograms, time series plots and Hovmöller diagrams, for all combinations of products. In addition, products are compared to quality controlled in situ SST data (available from the in situ SST Quality Monitor, iQUAM, companion system) in a consistent manner. A full history of products statistics is retained in L4-SQUAM for time series analysis. L4-SQUAM complements the two other Group for High Resolution SST (GHRSST) tools, the GHRSST Multi Product Ensemble (GMPE) and the High Resolution Diagnostic Data Set (HRDDS) systems, documented in part 1 of this paper and elsewhere, respectively.
Our results reveal significant differences between SST products in coastal and open ocean areas. Differences of >2 °C are often observed at high latitudes partly due to different treatment of the sea-ice transition zone. Thus when an ice flag is available, the intercomparisons are performed in two ways: including and excluding ice-flagged grid points. Such differences are significant and call for a community effort to understand their root cause and ensure consistency between SST products. Future work focuses on including the remaining daily L4 SST products, accommodating for newer L4 SSTs which resolve the diurnal variability and evaluating retrospectively regenerated L4 SSTs to support satellite data reprocessing efforts aimed at generating improved SST Climate Data Records
Plant architecture, its diversity and manipulation in agronomic conditions, in relation with pest and pathogen attacks
Abstract Plant architectural traits have been reported to impact pest and disease, i.e., attackers, incidence on several crops and to potentially provide alternative, although partial, solutions to limit chemical applications. In this paper, we introduce the major concepts of plant architecture analysis that can be used for investigating plant interactions with attacker development. We briefly review how primary growth, branching and reiteration allow the plant to develop its 3D structure which propertiesmay allow it (or not) to escape or survive to attacks. Different scales are considered: (i) the organs, in which nature, shape and position may influence pest and pathogen attack and development; (ii) the individual plant form, especially the spatial distribution of leaves in space which determines the within-plant micro-climate and the shoot distribution, topological connections which influence the within-plant propagation of attackers; and (iii) the plant population, in which density and spatial arrangement affect the micro-climate gradients within the canopy and may lead to different risks of propagation fromplant to plant. At the individual scale,we show how growth, branching and flowering traits combine to confer to every plant species an intrinsic architectural model. However, these traits vary quantitatively between genotypes within the species. In addition, we analyze how they can bemodulated throughout plant ontogeny and by environmental conditions, here considered lato sensu, i.e. including climatic conditions and manipulations by humans. Examples from different plant species with various architectural types, in particular for wheat and apple, are provided to draw a comprehensive view of possible plant protection strategies which could benefit from plant architectural traits, their genetic variability as well as their plasticity to environmental conditions and agronomic manipulations. Associations between species and/or genotypes having different susceptibility and form could also open new solutions to improve the tolerance to pest and disease at whole population scale