2,109 research outputs found

    Ready to Teach All Children? Unpacking Early Childhood Educators’ Feelings of Preparedness for Working with Children with Disabilities

    Get PDF
    Early childhood settings have the potential to support learners with diverse learning needs, including children with disabilities. However, if educators do not feel prepared to teach children with disabilities, this potential may not be fully realized. The current study examined early childhood educators’ (n = 1,296) feelings of preparedness for working with children with disabilities, including predictors of preparedness, and associations with assessment practices. Research Findings: Nearly 70% of educators felt well prepared to teach typically developing children whereas only 20% felt well prepared to teach children with disabilities. Educational attainment and education-related major predicted feelings of preparedness. Furthermore, feelings of preparedness related to perceived importance of assessment and self-rating of assessment. Feelings of preparedness for working with children with disabilities mediated nearly all of the associations between educational experiences and assessment practices. Practice or Policy: Findings support the need for educator preparation programs to include course content related to working with children with disabilities and assessment practices. Implications for practice and educational requirements for early childhood educators are discussed

    Body odor quality predicts behavioral attractiveness in humans

    Get PDF
    Growing effort is being made to understand how different attractive physical traits co-vary within individuals, partly because this might indicate an underlying index of genetic quality. In humans, attention has focused on potential markers of quality such as facial attractiveness, axillary odor quality, the second-to-fourth digit (2D:4D) ratio and body mass index (BMI). Here we extend this approach to include visually-assessed kinesic cues (nonverbal behavior linked to movement) which are statistically independent of structural physical traits. The utility of such kinesic cues in mate assessment is controversial, particularly during everyday conversational contexts, as they could be unreliable and susceptible to deception. However, we show here that the attractiveness of nonverbal behavior, in 20 male participants, is predicted by perceived quality of their axillary body odor. This finding indicates covariation between two desirable traits in different sensory modalities. Depending on two different rating contexts (either a simple attractiveness rating or a rating for long-term partners by 10 female raters not using hormonal contraception), we also found significant relationships between perceived attractiveness of nonverbal behavior and BMI, and between axillary odor ratings and 2D:4D ratio. Axillary odor pleasantness was the single attribute that consistently predicted attractiveness of nonverbal behavior. Our results demonstrate that nonverbal kinesic cues could reliably reveal mate quality, at least in males, and could corroborate and contribute to mate assessment based on other physical traits

    ZnII(atsm) is protective in amyotrophic lateral sclerosis model mice via a copper delivery mechanism

    Get PDF
    AbstractMutations in the metalloprotein Cu,Zn-superoxide dismutase (SOD1) cause approximately 20% of familial cases of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease for which effective therapeutics do not yet exist. Transgenic rodent models based on over-expression of mutant SOD1 have been developed and these have provided opportunity to test new therapeutic strategies and to study the mechanisms of mutant SOD1 toxicity. Although the mechanisms of mutant SOD1 toxicity are yet to be fully elucidated, incorrect or incomplete metallation of SOD1 confers abnormal folding, aggregation and biochemical properties, and improving the metallation state of SOD1 provides a viable therapeutic option. The therapeutic effects of delivering copper (Cu) to mutant SOD1 have been demonstrated recently. The aim of the current study was to determine if delivery of zinc (Zn) to SOD1 was also therapeutic. To investigate this, SOD1G37R mice were treated with the metal complex diacetyl-bis(4-methylthiosemicarbazonato)zincII [ZnII(atsm)]. Treatment resulted in an improvement in locomotor function and survival of the mice. However, biochemical analysis of spinal cord tissue collected from the mice revealed that the treatment did not increase overall Zn levels in the spinal cord nor the Zn content of SOD1. In contrast, overall levels of Cu in the spinal cord were elevated in the ZnII(atsm)-treated SOD1G37R mice and the Cu content of SOD1 was also elevated. Further experiments demonstrated transmetallation of ZnII(atsm) in the presence of Cu to form the Cu-analogue CuII(atsm), indicating that the observed therapeutic effects for ZnII(atsm) in SOD1G37R mice may in fact be due to in vivo transmetallation and subsequent delivery of Cu

    Effectively Measuring Exercise-Related Variations in T1ρ and T2 Relaxation Times of Healthy Articular Cartilage.

    Get PDF
    BACKGROUND: Determining the compositional response of articular cartilage to dynamic joint-loading using MRI may be a more sensitive assessment of cartilage status than conventional static imaging. However, distinguishing the effects of joint-loading vs. inherent measurement variability remains difficult, as the repeatability of these quantitative methods is often not assessed or reported. PURPOSE: To assess exercise-induced changes in femoral, tibial, and patellar articular cartilage composition and compare these against measurement repeatability. STUDY TYPE: Prospective observational study. POPULATION: Phantom and 19 healthy participants. FIELD STRENGTH/SEQUENCE: 3T; 3D fat-saturated spoiled gradient recalled-echo; T1ρ - and T2 -prepared pseudosteady-state 3D fast spin echo. ASSESSMENT: The intrasessional repeatability of T1ρ and T2 relaxation mapping, with and without knee repositioning between two successive measurements, was determined in 10 knees. T1ρ and T2 relaxation mapping of nine knees was performed before and at multiple timepoints after a 5-minute repeated, joint-loading stepping activity. 3D surface models were created from patellar, femoral, and tibial articular cartilage. STATISTICAL TESTS: Repeatability was assessed using root-mean-squared-CV (RMS-CV). Using Bland-Altman analysis, thresholds defined as the smallest detectable difference (SDD) were determined from the repeatability data with knee repositioning. RESULTS: Without knee repositioning, both surface-averaged T1ρ and T2 were very repeatable on all cartilage surfaces, with RMS-CV SDD) average exercise-induced in T1ρ and T2 of femoral (-8.0% and -5.3%), lateral tibial (-6.9% and -5.9%), medial tibial (+5.8% and +2.9%), and patellar (-7.9% and +2.8%) cartilage were observed. DATA CONCLUSION: Joint-loading with a stepping activity resulted in T1ρ and T2 changes above background measurement error. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1753-1764.GlaxoSmithKline National Institute of Health Research (NIHR) Cambridge Biomedical Research Centr

    Community oncologists\u27 perceptions and utilization of large-panel genomic tumor testing.

    Get PDF
    PURPOSE: Large-panel genomic tumor testing (GTT) is an emerging technology with great promise but uncertain clinical value. Previous research has documented variability in academic oncologists\u27 perceptions and use of GTT, but little is known about community oncologists\u27 perceptions of GTT and how perceptions relate to clinicians\u27 intentions to use GTT. METHODS: Community oncology physicians (N = 58) participating in a statewide initiative aimed at improving access to large-panel GTT completed surveys assessing their confidence in using GTT, attitudes regarding the value of GTT, perceptions of barriers to GTT implementation, and future intentions to use GTTs. Descriptive and multivariable regression analyses were conducted to characterize these perceptions and to explore the relationships between them. RESULTS: There was substantial variability in clinicians\u27 perceptions of GTT. Clinicians generally had moderate confidence in their ability to use GTT, but lower confidence in patients\u27 ability to understand test results and access targeted treatment. Clinicians had positive attitudes regarding the value of GTT. Clinicians\u27 future intentions to use GTT were associated with greater confidence in using GTT and greater perceived barriers to implementing GTT, but not with attitudes about the value of GTT. CONCLUSIONS: Community oncologists\u27 perceptions of large-panel genomic tumor testing are variable, and their future intentions to use GTT are associated with both their confidence in and perceived barriers to its use, but not with their attitudes towards GTT. More research is needed to understand other factors that determine how oncologists perceive and use GTT in clinical practice

    Cu-II(atsm) Attenuates Neuroinflammation

    Get PDF
    Background: Neuroinflammation and biometal dyshomeostasis are key pathological features of several neurodegenerative diseases, including Alzheimer's disease (AD). Inflammation and biometals are linked at the molecular level through regulation of metal buffering proteins such as the metallothioneins. Even though the molecular connections between metals and inflammation have been demonstrated, little information exists on the effect of copper modulation on brain inflammation. Methods: We demonstrate the immunomodulatory potential of the copper bis(thiosemicarbazone) complex Cu-II(atsm) in an neuroinflammatory model in vivo and describe its anti-inflammatory effects on microglia and astrocytes in vitro. Results: By using a sophisticated in vivo magnetic resonance imaging (MRI) approach, we report the efficacy of Cu-II(atsm) in reducing acute cerebrovascular inflammation caused by peripheral administration of bacterial lipopolysaccharide (LPS). Cu-II(atsm) also induced anti-inflammatory outcomes in primary microglia [significant reductions in nitric oxide (NO), monocyte chemoattractant protein 1 (MCP-1), and tumor necrosis factor (TNF)] and astrocytes [significantly reduced NO, MCP-1, and interleukin 6 (IL-6)] in vitro. These anti-inflammatory actions were associated with increased cellular copper levels and increased the neuroprotective protein metallothionein-1 (MT1) in microglia and astrocytes. Conclusion: The beneficial effects of Cu-II(atsm) on the neuroimmune system suggest copper complexes are potential therapeutics for the treatment of neuroinflammatory conditions.Peer reviewe

    Residual Complex I activity and amphidirectional Complex II operation support glutamate catabolism through mtSLP in anoxia

    Get PDF
    Anoxia halts oxidative phosphorylation (OXPHOS) causing an accumulation of reduced compounds in the mitochondrial matrix which impedes dehydrogenases. By simultaneously measuring oxygen concentration, NADH autofluorescence, mitochondrial membrane potential and ubiquinone reduction extent in isolated mitochondria in real-time, we demonstrate that Complex I utilized endogenous quinones to oxidize NADH under acute anoxia. 13C metabolic tracing or untargeted analysis of metabolites extracted during anoxia in the presence or absence of site-specific inhibitors of the electron transfer system showed that NAD+ regenerated by Complex I is reduced by the 2-oxoglutarate dehydrogenase Complex yielding succinyl-CoA supporting mitochondrial substrate-level phosphorylation (mtSLP), releasing succinate. Complex II operated amphidirectionally during the anoxic event, providing quinones to Complex I and reducing fumarate to succinate. Our results highlight the importance of quinone provision to Complex I oxidizing NADH maintaining glutamate catabolism and mtSLP in the absence of OXPHOS.</p

    Dynamic contrast-enhanced MRI of synovitis in knee osteoarthritis: repeatability, discrimination and sensitivity to change in a prospective experimental study

    Get PDF
    Abstract: Objectives: Evaluate test-retest repeatability, ability to discriminate between osteoarthritic and healthy participants, and sensitivity to change over 6 months, of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) biomarkers in knee OA. Methods: Fourteen individuals aged 40–60 with mild-moderate knee OA and 6 age-matched healthy volunteers (HV) underwent DCE-MRI at 3 T at baseline, 1 month and 6 months. Voxelwise pharmacokinetic modelling of dynamic data was used to calculate DCE-MRI biomarkers including Ktrans and IAUC60. Median DCE-MRI biomarker values were extracted for each participant at each study visit. Synovial segmentation was performed using both manual and semiautomatic methods with calculation of an additional biomarker, the volume of enhancing pannus (VEP). Test-retest repeatability was assessed using intraclass correlation coefficients (ICC). Smallest detectable differences (SDDs) were calculated from test-retest data. Discrimination between OA and HV was assessed via calculation of between-group standardised mean differences (SMD). Responsiveness was assessed via the number of OA participants with changes greater than the SDD at 6 months. Results: Ktrans demonstrated the best test-retest repeatability (Ktrans/IAUC60/VEP ICCs 0.90/0.84/0.40, SDDs as % of OA mean 33/71/76%), discrimination between OA and HV (SMDs 0.94/0.54/0.50) and responsiveness (5/1/1 out of 12 OA participants with 6-month change > SDD) when compared to IAUC60 and VEP. Biomarkers derived from semiautomatic segmentation outperformed those derived from manual segmentation across all domains. Conclusions: Ktrans demonstrated the best repeatability, discrimination and sensitivity to change suggesting that it is the optimal DCE-MRI biomarker for use in experimental medicine studies. Key Points: • Dynamic contrast-enhanced MRI (DCE-MRI) provides quantitative measures of synovitis in knee osteoarthritis which may permit early assessment of efficacy in experimental medicine studies. • This prospective observational study compared DCE-MRI biomarkers across domains relevant to experimental medicine: test-retest repeatability, discriminative validity and sensitivity to change. • The DCE-MRI biomarker Ktransdemonstrated the best performance across all three domains, suggesting that it is the optimal biomarker for use in future interventional studies
    corecore