104 research outputs found
Representing domains and scenarios by means of model replication and composition
We consider a domain as a particular system or a portion of the system, while a scenario is a sequence of effects on the domain, originated by a particular event or condition. We show how it is possible to build first the model of the domain by replication and composition of atomic models, each representing a particular aspect of the domain. Then, the models of the scenarios are obtained from the domain\u2019s model, by composing further atomic models representing the events originating the scenarios. In particular, we take into account the domain consisting of one control centre and a set of substations inside an electrical distribution grid, communicating by means of a network. We consider scenarios originated by threats such as the denial of service attack to the communication network, and the temporary unavailability of substations due to the failure and the repair of the internal components. Stochastic Activity Networks (SAN) are the modelling formalism. The simulation of the models representing the scenarios, estimates the impact of the threats on the communication reliability
Simulating the communication of commands and signals in a distribution grid
The report presents the simulation of communication scenarios involving one area control centre and a set of substations inside a distribution grid of the Electrical Power System. In such scenarios, the communication is affected by threats different from those under exam in [1, 2]; in particular, here, we consider the denial of service attack to the communication network, and the temporary internal failure of a subset of substations. The scenarios have been modeled and simulated in form of Stochastic Activity Networks (SAN); the goal is the evaluation of the impact of the threats, on the communication reliability
Microcantilever arrays functionalised with spiropyran photoactive moieties as systems to measure photo-induced surface stress changes
Herein we investigate the feasibility of detecting photo-induced surface stress changes using the deflection response of cantilevers. For this purpose, silicon microcantilevers have been functionalised with spiropyran photochromic molecules, using both a monolayer and a polymeric brushes approach. Upon ultraviolet light irradiation, the spiropyran unit is converted to the merocyanine form due to the photo-induced cleavage of the Cspiro-O bond. The two forms of the molecule have dramatically different charge, polarity and molecular conformations. This makes spiropyrans an ideal system to study the correlation between photo-induced molecular changes and corresponding changes in surface stress. Our investigations include monitoring the changes in static cantilever deflection, and consequently, surface stress of the spiropyran functionalised cantilevers on exposure to ultraviolet light. Cantilever deflection data reveals that ultraviolet induced conformational changes in the spiropyran moiety cause a change in compressive surface stress and this varies with the type of functionalisation method implemented. The change in surface stress response from the spiropyran polymer brushes functionalised cantilevers gives an average surface stress change of 98 Nm-1 (n = 8) while the spiropyran monolayer coated cantilevers have an average surface stress change of about 446 Nm-1 (n = 24) upon irradiation with UV light
CL316,243, a β3-adrenergic receptor agonist, induces muscle hypertrophy and increased strength.
Studies in vitro have demonstrated that β3-adrenergic receptors (β3-ARs) regulate protein metabolism in skeletal muscle by promoting protein synthesis and inhibiting protein degradation. In this study, we evaluated whether activation of β3-ARs by the selective agonist CL316,243 modifies the functional and structural properties of skeletal muscles of healthy mice. Daily injections of CL316,243 for 15 days resulted in a significant improvement in muscle force production, assessed by grip strength and weight tests, and an increased myofiber cross-sectional area, indicative of muscle hypertrophy. In addition, atomic force microscopy revealed a significant effect of CL316,243 on the transversal stiffness of isolated muscle fibers. Interestingly, the expression level of mammalian target of rapamycin (mTOR) downstream targets and neuronal nitric oxide synthase (NOS) was also found to be enhanced in tibialis anterior and soleus muscles of CL316,243 treated mice, in accordance with previous data linking β3-ARs to mTOR and NOS signaling pathways. In conclusion, our data suggest that CL316,243 systemic administration might be a novel therapeutic strategy worthy of further investigations in conditions of muscle wasting and weakness associated with aging and muscular diseases
chitosan biopolymer alternative adhesion factor and scaffold matrix for 2d and 3d neuronal cultures
The increase of different types of cell cultures, which can be used for the in vitro studies of physiological and/or pathological processes, has introduced the need to improve culture techniques through the use of materials and culture media that promote growth, recreating a cellular micro-environment that can be asserted in in vivo condition. The standard methods for the functionalization of supports used for cell cultures are based on the use of synthetic or natural biopolymers, which generally have high costs, such as poly-lysine and polyornithine. The aim of this work is to demonstrate the alternative use of the polysaccharide chitosan as adhesion factor and structural component for 2D/3D neuronal cultures. Thanks to its versatility, it could be easily functionalized for the fabrication of personalized of in vitro model
Doped Overoxidized Polypyrrole Microelectrodes as Sensors for the Detection of Dopamine Released from Cell Populations
A surface modification of interdigitated gold microelectrodes (IDEs) with a doped polypyrrole (PPy) film for detection of dopamine released from populations of differentiated PC12 cells is presented. A thin PPy layer was potentiostatically electropolymerized from an aqueous pyrrole solution onto electrode surfaces. The conducting polymer film was doped during electropolymerization by introducing counter-ions in the monomer solution. Several counter-ions were tested and the resulting electrode modifications were characterized electrochemically to find the optimal dopant that increases sensitivity in dopamine detection. Overoxidation of the PPy films was shown to contribute to a significant enhancement in sensitivity to dopamine. The changes caused by overoxidation in the electrochemical behavior and electrode morphology were investigated using cyclic voltammetry and SEM as well as AFM, respectively. The optimal dopant for dopamine detection was found to be polystyrene sulfonate anion (PSS-). Rat pheochromocytoma (PC12) cells, a suitable model to study exocytotic dopamine release, were differentiated on IDEs functionalized with an overoxidized PSS--doped PPy film. The modified electrodes were used to amperometrically detect dopamine released by populations of cells upon triggering cellular exocytosis with an elevated K+ concentration. A comparison between the generated current on bare gold electrodes and gold electrodes modified with overoxidized doped PPy illustrates the clear advantage of the modification, yielding 2.6-fold signal amplification. The results also illustrate how to use cell population based dopamine exocytosis measurements to obtain biologically significant information that can be relevant in, for instance, the study of neural stem cell differentiation into dopaminergic neurons
The LSST Era of Supermassive Black Hole Accretion Disk Reverberation Mapping
peer reviewedThe Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST) will detect an unprecedentedly large sample of actively accreting supermassive black holes with typical accretion disk (AD) sizes of a few light days. This brings us to face challenges in the reverberation mapping (RM) measurement of AD sizes in active galactic nuclei using interband continuum delays. We examine the effect of LSST cadence strategies on AD RM using our metric AGN_TimeLagMetric. It accounts for redshift, cadence, the magnitude limit, and magnitude corrections for dust extinction. Running our metric on different LSST cadence strategies, we produce an atlas of the performance estimations for LSST photometric RM measurements. We provide an upper limit on the estimated number of quasars for which the AD time lag can be computed within 0 1000 sources in each deep drilling field (DDF; (10 deg2)) in any filter, with the redshift distribution of these sources peaking at z ≍ 1. We find the LSST observation strategies with a good cadence (≲5 days) and a long cumulative season (~9 yr), as proposed for LSST DDF, are favored for the AD size measurement. We create synthetic LSST light curves for the most suitable DDF cadences and determine RM time lags to demonstrate the impact of the best cadences based on the proposed metric
Gaia Early Data Release 3: Structure and properties of the Magellanic Clouds
We compare the Gaia DR2 and Gaia EDR3 performances in the study of the Magellanic Clouds and show the clear improvements in precision and accuracy in the new release. We also show that the systematics still present in the data make the determination of the 3D geometry of the LMC a difficult endeavour; this is at the very limit of the usefulness of the Gaia EDR3 astrometry, but it may become feasible with the use of additional external data. We derive radial and tangential velocity maps and global profiles for the LMC for the several subsamples we defined. To our knowledge, this is the first time that the two planar components of the ordered and random motions are derived for multiple stellar evolutionary phases in a galactic disc outside the Milky Way, showing the differences between younger and older phases. We also analyse the spatial structure and motions in the central region, the bar, and the disc, providing new insights into features and kinematics. Finally, we show that the Gaia EDR3 data allows clearly resolving the Magellanic Bridge, and we trace the density and velocity flow of the stars from the SMC towards the LMC not only globally, but also separately for young and evolved populations. This allows us to confirm an evolved population in the Bridge that is slightly shift from the younger population. Additionally, we were able to study the outskirts of both Magellanic Clouds, in which we detected some well-known features and indications of new ones
- …