41 research outputs found

    Case-case comparison of smoking and alcohol risk associations with Epstein-Barr virus-positive gastric cancer: Behavioral Risk Factor in EBV-Positive Gastric Cancer

    Get PDF
    Helicobacter pylori is the primary cause of gastric cancer. However, monoclonal Epstein-Barr virus (EBV) nucleic acid is also present in up to 10% of these tumors worldwide. EBV prevalence is increased with male sex, non-antral localization and surgically disrupted anatomy. To further examine associations between EBV and gastric cancer, we organized an international consortium of 11 studies with tumor EBV status assessed by in situ hybridization. We pooled individual-level data on 2,648 gastric cancer patients, including 184 (7%) with EBV-positive cancers; all studies had information on cigarette use (64% smokers) and 9 had data on alcohol (57% drinkers). We compared patients with EBV-positive and EBV-negative tumors to evaluate smoking and alcohol interactions with EBV status. To account for within-population clustering, multi-level logistic regression models were used to estimate interaction odds ratios (OR) adjusted for distributions of sex (72% male), age (mean 59 years), tumor histology (56% Lauren intestinal-type), anatomic subsite (61% noncardia) and year of diagnosis (1983–2012). In unadjusted analyses, the OR of EBV positivity with smoking was 2.2 (95% confidence interval [CI], 1.6–3.2). The OR was attenuated to 1.5 (95% CI, 1.01–2.3) by adjustment for the possible confounders. There was no significant interaction of EBV status with alcohol drinking (crude OR, 1.4; adjusted OR, 1.0). Our data indicate the smoking association with gastric cancer is stronger for EBV-positive than EBV-negative tumors. Conversely, the null association with alcohol does not vary by EBV status. Distinct epidemiologic characteristics of EBV-positive cancer further implicate the virus as a co-factor in gastric carcinogenesis

    Improved survival of gastric cancer with tumour Epstein–Barr virus positivity: an international pooled analysis

    Get PDF
    About 9% of gastric carcinomas have Epstein–Barr virus (EBV) in the tumour cells, but it is unclear whether viral presence influences clinical progression. We therefore examined a large multicentre case series for the association of tumour EBV status with survival after gastric cancer diagnosis, accounting for surgical stage and other prognostic factors

    The Helicobacter pylori Genome Project : insights into H. pylori population structure from analysis of a worldwide collection of complete genomes

    Get PDF
    Helicobacter pylori, a dominant member of the gastric microbiota, shares co-evolutionary history with humans. This has led to the development of genetically distinct H. pylori subpopulations associated with the geographic origin of the host and with differential gastric disease risk. Here, we provide insights into H. pylori population structure as a part of the Helicobacter pylori Genome Project (HpGP), a multi-disciplinary initiative aimed at elucidating H. pylori pathogenesis and identifying new therapeutic targets. We collected 1011 well-characterized clinical strains from 50 countries and generated high-quality genome sequences. We analysed core genome diversity and population structure of the HpGP dataset and 255 worldwide reference genomes to outline the ancestral contribution to Eurasian, African, and American populations. We found evidence of substantial contribution of population hpNorthAsia and subpopulation hspUral in Northern European H. pylori. The genomes of H. pylori isolated from northern and southern Indigenous Americans differed in that bacteria isolated in northern Indigenous communities were more similar to North Asian H. pylori while the southern had higher relatedness to hpEastAsia. Notably, we also found a highly clonal yet geographically dispersed North American subpopulation, which is negative for the cag pathogenicity island, and present in 7% of sequenced US genomes. We expect the HpGP dataset and the corresponding strains to become a major asset for H. pylori genomics

    Methylation of DAPK

    No full text
    corecore