29 research outputs found

    Genetic variants involved in blood pressure response to losartan identified by GWAS methodology

    Get PDF
    Aim: to identify genetic variants involved in blood pressure response to Losartan, an angiotensin II receptor blocker, with a whole genome approach. Methods: n=722 never treated patients from Italy (SOPHIA study) with Essential Hypertension (EH): Losartan 50 mg o.d. was prescribed for 4 weeks to 539 patients. A genome-wide association study and imputation were perfomed on 494 patients. After quality control 372 patients remained for analysis To confirm the specificity of our findings, we tested their association with deltaSBP at 4wks in 458 patients treated with HCTZ. The best markers were tested for replication in two independent cohorts of hypertensives from the GERA2 and GENRES studies. Results: 131 SNPs were associated with deltaSBP4 (P≤10-5), 121 of them to diastolic BP response. A peak of association in the Calcium/Calmodulin-dependent protein Kinase I D gene (CAMK1D) was identified: rs10752271 showed an effect size of -5.5±0.94mmHg and a P=1.2x10-8). No association was found in HCTZ samples. In GENRES the association was confirmed (P=0.04, effect size=-5.3±2.5mmHg). Conclusion: The rs10752271 polymorphism in the CAMK1D gene may represent a novel tool for individualized antihypertensive treatment. The Calcium/Calmodulin-dependent protein Kinase I, CAMKI, belongs to the regulatory pathway involved in aldosterone synthesis. Circulating aldosterone levels were directly associated with an increase in blood pressure and the development of hypertension (Framingham Offspring Study).</br

    A Functional 12T-insertion polymorphism in the <i>ATP1A1</i> promoter confers decreased susceptibility to hypertension in a male Sardinian population

    Get PDF
    Identification of susceptibility genes for essential hypertension in humans has been a challenge due to its multifactorial pathogenesis complicated by gene-gene and gene-environment interactions, developmental programing and sex specific differences. These concurrent features make identification of causal hypertension susceptibility genes with a single approach difficult, thus requiring multiple lines of evidence involving genetic, biochemical and biological experimentation to establish causal functional mutations. Here we report experimental evidence encompassing genetic, biochemical and in vivo modeling that altogether support ATP1A1 as a hypertension susceptibility gene in males in Sardinia, Italy. ATP1A1 encodes the α1Na,K-ATPase isoform, the sole sodium pump in vascular endothelial and renal tubular epithelial cells. DNA-sequencing detected a 12-nucleotide long thymidine (12T) insertion(ins)/deletion(del) polymorphism within a poly-T sequence (38T vs 26T) in the ATP1A1 5’-regulatory region associated with hypertension in a male Sardinian population. The 12T-insertion allele confers decreased susceptibility to hypertension (P = 0.035; OR = 0.50 [0.28–0.93]) accounting for 12.1 mmHg decrease in systolic BP (P = 0.02) and 6.6 mmHg in diastolic BP (P = 0.046). The ATP1A1 promoter containing the 12T-insertion exhibited decreased transcriptional activity in in vitro reporter-assay systems, indicating decreased α1Na,K-ATPase expression with the 12T-insertion, compared with the 12T-deletion ATP1A1 promoter. To test the effects of decreased α1Na,K-ATPase expression on blood pressure, we measured blood pressure by radiotelemetry in three month-old, highly inbred heterozygous knockout ATP1A1+/− male mice with resultant 58% reduction in ATP1A1 protein levels. Male ATP1A1+/− mice showed significantly lower blood pressure (P &#60; 0.03) than age-matched male wild-type littermate controls. Concordantly, lower ATP1A1 expression is expected to lower Na-reabsorption in the kidney thereby decreasing sodium-associated risk for hypertension and sodium-induced endothelial stiffness and dysfunction. Altogether, data support ATP1A1 as a hypertension susceptibility gene in a male Sardinian population, and mandate further investigation of its involvement in hypertension in the general population

    Sex-specific effects of NLRP6/AVR and ADM <i>loci</i> on susceptibility to essential hypertension in a Sardinian population

    Get PDF
    Coronary artery disease, heart failure, fatal arrhythmias, stroke, and renal disease are the most common causes of mortality for humans, and essential hypertension remains a major risk factor. Elucidation of susceptibility loci for essential hypertension has been difficult because of its complex, multifactorial nature involving genetic, environmental, and sex- and age-dependent nature. We investigated whether the 11p15.5 region syntenic to rat chromosome 1 region containing multiple blood pressure quantitative trait loci (QTL) detected in Dahl rat intercrosses harbors polymorphisms that contribute to susceptibility/resistance to essential hypertension in a Sardinian population. Initial testing performed using microsatellite markers spanning 18 Mb of 11p15.5 detected a strong association between D11S1318 (at 2.1 Mb, P = 0.004) and D11S1346 (at 10.6 Mb, P = 0.00000004), suggesting that loci in close proximity to these markers may contribute to susceptibility in our Sardinian cohort. NLR family, pyrin domain containing 6/angiotensin-vasopressin receptor (NLRP6/AVR), and adrenomedullin (ADM) are in close proximity to D11S1318 and D11S1346, respectively; thus we tested single nucleotide polymorphisms (SNPs) within NLRP6/AVR and ADM for their association with hypertension in our Sardinian cohort. Upon sex stratification, we detected one NLRP6/AVR SNP associated with decreased susceptibility to hypertension in males (rs7948797G, P = 0.029; OR = 0.73 [0.57-0.94]). For ADM, sex-specific analysis showed a significant association between rs4444073C, with increased susceptibility to essential hypertension only in the male population (P = 0.006; OR = 1.44 [1.13-1.84]). Our results revealed an association between NLRP6/AVR and ADM loci with male essential hypertension, suggesting the existence of sex-specific NLRP6/AVR and ADM variants affecting male susceptibility to essential hypertension

    Sardinians genetic background explained by runs of homozygosity and genomic regions under positive selection

    Get PDF
    The peculiar position of Sardinia in the Mediterranean sea has rendered its population an interesting biogeographical isolate. The aim of this study was to investigate the genetic population structure, as well as to estimate Runs of Homozygosity and regions under positive selection, using about 1.2 million single nucleotide polymorphisms genotyped in 1077 Sardinian individuals. Using four different methods - fixation index, inflation factor, principal component analysis and ancestry estimation - we were able to highlight, as expected for a genetic isolate, the high internal homogeneity of the island. Sardinians showed a higher percentage of genome covered by RoHs&gt;0.5 Mb (FRoH%0.5) when compared to peninsular Italians, with the only exception of the area surrounding Alghero. We furthermore identified 9 genomic regions showing signs of positive selection and, we re-captured many previously inferred signals. Other regions harbor novel candidate genes for positive selection, like TMEM252, or regions containing long non coding RNA. With the present study we confirmed the high genetic homogeneity of Sardinia that may be explained by the shared ancestry combined with the action of evolutionary forces

    Genome-Wide Meta-Analysis of Blood Pressure Response to beta(1)- Blockers : Results From ICAPS (International Consortium of Antihypertensive Pharmacogenomics Studies

    Get PDF
    Background-There exists a wide interindividual variability in blood pressure (BP) response to beta(1)-blockers. To identify the genetic determinants of this variability, we performed a pharmacogenomic genome-wide meta-analysis of genetic variants beta(1)-influencing blocker BP response. Methods and Results-Genome-wide association analysis for systolic BP and diastolic BP response to beta(1)-blockers from 5 randomized clinical trials consisting of 1254 patients with hypertension of European ancestry were combined in meta-analysis and single nucleotide polymorphisms (SNPs) with P Conclusions-Data from randomized clinical trials of 8 European ancestry and 2 black cohorts support the assumption that BST1 containing locus on chromosome 4 is associated with beta(1)-blocker BP response. Given the previous associations of this region with BP, this is a strong candidate region for future functional studies and potential use in precision medicine approaches for BP management and risk prediction.Peer reviewe

    Sex-specific effects of NLRP6/AVR and ADM loci on susceptibility to essential hypertension in a Sardinian population.

    Get PDF
    Coronary artery disease, heart failure, fatal arrhythmias, stroke, and renal disease are the most common causes of mortality for humans, and essential hypertension remains a major risk factor. Elucidation of susceptibility loci for essential hypertension has been difficult because of its complex, multifactorial nature involving genetic, environmental, and sex- and age-dependent nature. We investigated whether the 11p15.5 region syntenic to rat chromosome 1 region containing multiple blood pressure quantitative trait loci (QTL) detected in Dahl rat intercrosses harbors polymorphisms that contribute to susceptibility/resistance to essential hypertension in a Sardinian population. Initial testing performed using microsatellite markers spanning 18 Mb of 11p15.5 detected a strong association between D11S1318 (at 2.1 Mb, P = 0.004) and D11S1346 (at 10.6 Mb, P = 0.00000004), suggesting that loci in close proximity to these markers may contribute to susceptibility in our Sardinian cohort. NLR family, pyrin domain containing 6/angiotensin-vasopressin receptor (NLRP6/AVR), and adrenomedullin (ADM) are in close proximity to D11S1318 and D11S1346, respectively; thus we tested single nucleotide polymorphisms (SNPs) within NLRP6/AVR and ADM for their association with hypertension in our Sardinian cohort. Upon sex stratification, we detected one NLRP6/AVR SNP associated with decreased susceptibility to hypertension in males (rs7948797G, P = 0.029; OR = 0.73 [0.57-0.94]). For ADM, sex-specific analysis showed a significant association between rs4444073C, with increased susceptibility to essential hypertension only in the male population (P = 0.006; OR = 1.44 [1.13-1.84]). Our results revealed an association between NLRP6/AVR and ADM loci with male essential hypertension, suggesting the existence of sex-specific NLRP6/AVR and ADM variants affecting male susceptibility to essential hypertension

    A functional 12T-insertion polymorphism in the ATP1A1 promoter confers decreased susceptibility to hypertension in a male Sardinian population.

    Full text link
    Identification of susceptibility genes for essential hypertension in humans has been a challenge due to its multifactorial pathogenesis complicated by gene-gene and gene-environment interactions, developmental programing and sex specific differences. These concurrent features make identification of causal hypertension susceptibility genes with a single approach difficult, thus requiring multiple lines of evidence involving genetic, biochemical and biological experimentation to establish causal functional mutations. Here we report experimental evidence encompassing genetic, biochemical and in vivo modeling that altogether support ATP1A1 as a hypertension susceptibility gene in males in Sardinia, Italy. ATP1A1 encodes the α1Na,K-ATPase isoform, the sole sodium pump in vascular endothelial and renal tubular epithelial cells. DNA-sequencing detected a 12-nucleotide long thymidine (12T) insertion(ins)/deletion(del) polymorphism within a poly-T sequence (38T vs 26T) in the ATP1A1 5'-regulatory region associated with hypertension in a male Sardinian population. The 12T-insertion allele confers decreased susceptibility to hypertension (P = 0.035; OR = 0.50 [0.28-0.93]) accounting for 12.1 mmHg decrease in systolic BP (P = 0.02) and 6.6 mmHg in diastolic BP (P = 0.046). The ATP1A1 promoter containing the 12T-insertion exhibited decreased transcriptional activity in in vitro reporter-assay systems, indicating decreased α1Na,K-ATPase expression with the 12T-insertion, compared with the 12T-deletion ATP1A1 promoter. To test the effects of decreased α1Na,K-ATPase expression on blood pressure, we measured blood pressure by radiotelemetry in three month-old, highly inbred heterozygous knockout ATP1A1+/- male mice with resultant 58% reduction in ATP1A1 protein levels. Male ATP1A1+/- mice showed significantly lower blood pressure (P < 0.03) than age-matched male wild-type littermate controls. Concordantly, lower ATP1A1 expression is expected to lower Na-reabsorption in the kidney thereby decreasing sodium-associated risk for hypertension and sodium-induced endothelial stiffness and dysfunction. Altogether, data support ATP1A1 as a hypertension susceptibility gene in a male Sardinian population, and mandate further investigation of its involvement in hypertension in the general population

    Prevalence and clinical features of heterozygous carriers of autosomal recessive hypercholesterolemia in Sardinia

    Full text link
    Objective: Autosomal recessive hypercholesterolemia (ARH) is a lipid disorder caused by mutations in a specific adaptor protein for the LDL receptor. ARH is rare except in Sardinia where three alleles (ARH1, ARH2 and ARH3) explain most of cases. The prevalence of ARH heterozygotes in Sardinia is not well determined as well as inconclusive data are available on the effect of the ARH carrier status on LDL cholesterol (LDL-C) and coronary risk. Methods: 3410 Sardinians (986 blood donors, 1709 with hypertension and 715 with myocardial infarction (MI)) were screened for ARH alleles. For comparison purposes, lipid data of 60 ARH heterozygous carriers and 60 non-carriers identified within 24 ARH families were also considered. Results: In the whole study cohort, no ARH homozygotes were found, but 15 ARH1 (0.44%) and 9 ARH2 (0.26%) heterozygous carriers were identified. The frequency of ARH alleles in blood donors was 0.0030, not different from that in hypertensive subjects (0.0032). ARH alleles tended to be more common in MI patients (0.0049), but no association between ARH carrier status and MI risk was detected after controlling for conventional risk factors. ARH carriers and non-carriers showed similar LDL-C levels. This result was confirmed when ARH carriers and non-carriers identified throughout family-based and population-based screenings were combined and compared (141.0 +/- 41 mg/dl vs. 137.0 +/- 41 mg/dl, respectively; p = 0.19). Conclusions: These data indicate that the frequency of ARH heterozygotes in Sardinia is similar to 1:143 individuals, thus making this condition one of the most common in the Sardinian population. However, ARH carrier status does not influence LDL-C concentration and coronary risk, thus suggesting that ARH can be regarded as a truly recessive disorder. (C) 2009 Elsevier Ireland Ltd. All rights reserved

    Structure of <i>NLRP6/AVR</i> and <i>ADM</i> genes and location of the SNPs analyzed.

    Full text link
    <p>Exons (shown as boxes) 1–8 for <i>NLRP6/AVR</i> and exons 1–4 for <i>ADM</i> are shown. Gene untranslated (5′-untranslated and 3′-untranslated) regions are unfilled. Corresponding nucleotide positions for the <i>NLRP6/AVR</i> and <i>ADM</i> loci on chromosome 11 are indicated in bp. Locations of the SNPs genotyped are shown by vertical lines. </p
    corecore