9 research outputs found
Microwave-assisted carboxymethylation of cellulose extracted from brewer's spent grain
AbstractCellulose was extracted from brewer's spent grain (BSG) by alkaline and bleaching treatments. The extracted cellulose was used in the preparation of carboxymethyl cellulose (CMC) by reaction with monochloroacetic acid in alkaline medium with the use of a microwave reactor. A full-factorial 23 central composite design was applied in order to evaluate how parameters of carboxymethylation process such as reaction time, amount of monochloroacetic acid and reaction temperature affect the average degree of substitution (DS¯) of the cellulose derivative. An optimization strategy based on response surface methodology has been used for this process. The optimized conditions to yield CMC with the highest DS¯ of 1.46 follow: 5g of monochloroacetic acid per gram of cellulose, reaction time of 7.5min and temperature of 70°C. This work demonstrated the feasibility of a fast and efficient microwave-assisted method to synthesize carboxymethyl cellulose from cellulose isolated of brewer's spent grain
Chronic Influence of Inspiratory Muscle Training at Different Intensities on the Serum Metabolome
This study investigated the chronic effect of inspiratory muscle training (IMT) on the human serum metabolome in healthy male recreational cyclists. Using a randomized, parallel group design, twenty-eight participants were randomized to three IMT groups: low intensity (LI, n = 7); moderate intensity (MI, n = 10); and high intensity (HI, n = 11). The IMT was performed for 11 weeks. Another group of participants under the same conditions, who did not perform the IMT but participated in all procedures, was included as controls (CG, n = 6). Blood samples were collected one week before and after 11 weeks of IMT and analyzed for metabolite shifts using 1H NMR. Statistical analysis included a 4 (group) × 2 (time) repeated measures ANOVA using the general linear model (GLM), and multivariate principal component analysis (PCA). Untargeted metabolomics analysis of serum samples identified 22 metabolites, including amino acids, lipids, and tricarboxylic acid cycle intermediates. Metabolites shifts did not differ between groups, indicating that IMT at three intensity levels did not alter the serum metabolome relative to the control group. These results reveal novel insights into the metabolic effects of the IMT and are consistent with the results from other studies showing negligible chronic alterations in the serum metabolome in response to physical training