735 research outputs found

    Regulatory Role Played by the mRNA Binding Protein Tristetraprolin in the Skin and its Involvement in Different Diseases

    Get PDF
    The mRNA binding protein Tristetraprolin (TTP), encoded by the ZFP36 gene, plays a fundamental regulatory role in a wide variety of cellular processes by means of its widespread expression in different tissues, and of its ability to post transcriptionally regulate the stability, and therefore the expression, of multiple specific target mRNAs. Because of these features, TTP expression and activity are strictly regulated, and malfunctions of such mechanisms underlie different pathologies. Here we recapitulate the role of TTP in the skin, and its involvement in different conditions, with special reference to psoriasis and cancer

    Apoptotic pathways in the pathogenesis of pemphigus: targets for new therapies

    Get PDF
    Pemphigus is a group of rare autoimmune blistering diseases of the skin in which autoantibodies to desmosome cadherins, desmogleins, induce loss of cell-cell adhesion (acantholysis). In addition to steric hindrance and activation of intracellular phosphorylation cascade signaling pathways, apoptosis has been suggested to contribute to the mechanism by which pathogenic IgG induces acantholysis. We review the literature examining the role of apoptosis in pemphigus. Current data recognize a central role of apoptosis in the mechanisms of blister induction. In particular, here we stress the key role of FasL in pemphigus, as it is able to first induce apoptosis, then acantholysis. Being pro-apoptotic molecules important in blister formation, they could represent new specific targets for pemphigus treatment

    CD271 downregulation promotes melanoma progression and invasion in 3-dimensional models and in zebrafish

    Get PDF
    CD271 is a neurotrophin receptor variably expressed in melanoma. While contradictory data are reported on its role as a marker of tumor initiating cells, little is known on its function in tumor progression. CD271 expression was higher in spheroids derived from freshly isolated cells of primary melanomas and in primary WM115 and WM793-B cell lines, while it decreased during progression to advanced stages in cells isolated from metastatic melanomas and in metastatic WM266-4 and 1205Lu cell lines. Moreover, CD271 was scarcely detected in the highly invasive spheroids (SKMEL28 and 1205Lu). CD271, originally expressed in the epidermis of skin reconstructs, disappeared when melanoma started to invade the dermis. SKMEL8 CD271(-) cells showed greater proliferation and invasiveness in vitro, and were associated with a higher number of metastases in zebrafish, as compared to CD271(+) cells. CD271 silencing in WM115 induced a more aggressive phenotype in vitro and in vivo. On the contrary, CD271 overexpression in SKMEL28 cells reduced invasion in vitro, and CD271 overexpressing 1205Lu cells was associated with a lower percentage of metastases in zebrafish. A reduced cell-cell adhesion was also observed in absence of CD271. Taken together, these results indicate that CD271 loss is critical for melanoma progression and metastasis

    Potential Infectious Etiology of Behçet's Disease

    Get PDF
    Behçet's disease is a multisystem inflammatory disorder characterized by recurrent oral aphthous ulcers, genital ulcers, uveitis, and skin lesions. The cause of Behçet's disease remains unknown, but epidemiologic findings suggest that an autoimmune process is triggered by an environmental agent in a genetically predisposed individual. An infectious agent could operate through molecular mimicry, and subsequently the disease could be perpetuated by an abnormal immune response to an autoantigen in the absence of ongoing infection. Potentia bacterial are Saccharomyces cerevisiae, mycobacteria, Borrelia burgdorferi, Helicobacter pylori, Escherichia coli, Staphylococcus aureus, and Mycoplasma fermentans, but the most commonly investigated microorganism is Streptococcus sanguinis. The relationship between streptococcal infections and Behçet's disease is suggested by clinical observations that an unhygienic oral condition is frequently noted in the oral cavity of Behçet's disease patients. Several viral agents, including herpes simplex virus-1, hepatitis C virus, parvovirus B19, cytomegalovirus, Epstein-Barr virus and varicella zoster virus, may also have some role

    In Vitro, Ex Vivo and In Vivo Models for the Study of Pemphigus

    Get PDF
    Pemphigus is a life-threatening autoimmune disease. Several phenotypic variants are part of this family of bullous disorders. The disease is mainly mediated by pathogenic autoantibodies, but is also directed against two desmosomal adhesion proteins, desmoglein 1 (DSG1) and 3 (DSG3), which are expressed in the skin and mucosae. By binding to their antigens, autoantibodies induce the separation of keratinocytes, in a process known as acantholysis. The two main Pemphigus variants are Pemphigus vulgaris and foliaceus. Several models of Pemphigus have been described: in vitro, ex vivo and in vivo, passive or active mouse models. Although no model is ideal, different models display specific characteristics that are useful for testing different hypotheses regarding the initiation of Pemphigus, or to evaluate the efficacy of experimental therapies. Different disease models also allow us to evaluate the pathogenicity of specific Pemphigus autoantibodies, or to investigate the role of previously not described autoantigens. The aim of this review is to provide an overview of Pemphigus disease models, with the main focus being on active models and their potential to reproduce different disease subgroups, based on the involvement of different autoantigens

    A Novel In Vivo Active Pemphigus Model Targeting Desmoglein1 and Desmoglein3: A Tool Representing All Pemphigus Variants

    Get PDF
    : Background: Pemphigus is a life-threatening blistering autoimmune disease. Several forms, characterized by the presence of autoantibodies against different autoantigens, have been described. In Pemphigus Vulgaris (PV), autoantibodies target the cadherin Desmoglein 3 (DSG3), while in Pemphigus foliaceous (PF) autoantibodies target the cadherin Desmoglein 1 (DSG1). Another variant, mucocutaneous Pemphigus, is characterized by the presence of IgG against both DSG1 and DSG3. Moreover, other forms of Pemphigus characterized by the presence of autoantibodies against other autoantigens have been described. With regard to animal models, one can distinguish between passive models, where pathological IgG are transferred into neonatal mice, and active models, where B cells deriving from animals immunized against a specific autoantigen are transferred into immunodeficient mice that develop the disease. Active models recreate PV and a form of Pemphigus characterized by the presence of IgG against the cadherin Desmocollin 3 (DSC3). Further approaches allow to collect sera or B/T cells from mice immunized against a specific antigen to evaluate the mechanisms underlying the onset of the disease. Objective: To develop and characterize a new active model of Pemphigus where mice express auto antibodies against either DSG1 alone, or DSG1 and DSG3, thereby recapitulating PF and mucocutaneous Pemphigus, respectively. In addition to the existing models, with the active models reported in this work, it will be possible to recapitulate and mimic the main forms of pemphigus in adult mice, thus allowing a better understanding of the disease in the long term, including the benefit/risk ratio of new therapies. Results: The new DSG1 and the DSG1/DSG3 mixed models were developed as proposed. Immunized animals, and subsequently, animals that received splenocytes from the immunized donors produce a high concentration of circulating antibodies against the specific antigens. The severity of the disease was assessed by evaluating the PV score, evidencing that the DSG1/DSG3 mixed model exhibits the most severe symptoms among those analyzed. Alopecia, erosions, and blistering were observed in the skin of DSG1, DSG3 and DSG1/DSG3 models, while lesions in the mucosa were observed only in DSG3 and DSG1/DSG3 animals. The effectiveness of the corticosteroid Methyl-Prednisolone was evaluated in the DSG1 and DSG1/DSG3 models, that showed only partial responsiveness

    Blocking soluble Fas Ligand ameliorates pemphigus: PC111 efficacy in ex-vivo human pemphigus models

    Get PDF
    : Pemphigus is a life-threatening, chronic, autoimmune bullous disease affecting both the skin and the mucous membranes. Based on the mainstream concept that blister formation occurs upon binding of autoantibodies to their antigen proteins (desmoglein1, DSG1 and desmoglein3, DSG3), current therapies mostly aim to suppress the immune system. To avoid the severe side effects associated with the chronic use of immunosuppressive treatments, we have developed PC111, a fully human monoclonal antibody targeting human Fas ligand (FasL). We have provided a number of in vitro and in vivo evidences showing that soluble FasL induces keratinocyte apoptosis followed by acantholysis. An anti-murine FasL prevents blister formation in the pemphigus neonatal mouse model. To confirm the mechanism of action (MoA) and the efficacy of PC111 in a human pemphigus context, we used the keratinocyte dissociation assay and two independent Human Skin Organ Cultures (HSOC) pemphigus models. PC111 reduced acantholysis in vitro, as shown by the dose-dependent reduction of fragments in the monolayer cultures. In the first HSOC model, normal human skin was subcutaneously injected with a scFv antibody fragment directed against DSG1 and DSG3, resulting in a severe acantholysis (70-100%) after 24 hours. PC111 inhibited blister formation to around 50% of control. In the second model, normal human skin was injected with a mixture of pemphigus patients' autoantibodies resulting in a less severe acantholysis (20-30%). PC111 significantly suppressed blister formation to more than 75% up to 72 hours. These results confirm PC111 MoA and demonstrates the efficacy of the anti-FasL antibody also in a pemphigus setting

    A previously unreported function of beta1B integrin isoform in caspase-8-dependent integrin-mediated keratinocyte death

    Get PDF
    Integrins regulate adhesive cell-matrix interactions and mediate survival signals. On the other hand, unligated or free cytoplasmic fragments of integrins induce apoptosis in many cell types (integrin-mediated death). We have previously shown that b1 integrins expression protects keratinocyte stem cells from anoikis, while the role of the b1B integrin isoform has never been clarified. Here we report that suspended keratinocytes undergo apoptosis via the activation of caspase-8, independently of Fas/Fas Ligand system. Indeed, anti-b1 integrin neutralizing antibodies induced apoptosis in short-hairpin-RNA-Fas-Associated-Death-Domain treated cells. Moreover, before and during suspension, caspase-8 directly associated with b1 integrin, that in turn internalized and progressively degraded, shedding the cytoplasmic domain. b1B was expressed only in the cytoplasm in a perinuclear fashion and remained unaltered during suspension. At 24 hrs, as b1A located close to the nucleus, b1B co-localized with b1A and co-immunoprecipitated with caspase-8. Caspase-8 was activated earlier in b1B integrin transfected keratinocytes, and these cells underwent a higher rate of apoptosis than mock cells. By contrast, caspase-8 was not activated in siRNA b1B transfected cells. These results indicate that when b1A is unligated, b1B is responsible for “integrin-mediated death” in human keratinocytes

    E-FABP induces differentiation in normal human keratinocytes and modulates the differentiation process in psoriatic keratinocytes in vitro.

    Get PDF
    Epidermal fatty acid-binding protein (E-FABP) is a lipid carrier, originally discovered in human epidermis. We show that E-FABP is almost exclusively expressed in postmitotic (PM) keratinocytes, corresponding to its localization in the highest suprabasal layers, while it is barely expressed in keratinocyte stem cells (KSC) and transit amplifying (TA) keratinocytes. Transfection of normal human keratinocytes with recombinant (r) E-FABP induces overexpression of K10 and involucrin. On the other hand, E-FABP inhibition by siRNA downregulates K10 and involucrin expression in normal keratinocytes through NF-ÎşB and JNK signalling pathways. E-FABP is highly expressed in psoriatic epidermis, and it is mainly localized in stratum spinosum. Psoriatic PM keratinocytes overexpress E-FABP as compared to the same population in normal epidermis. E-FABP inhibition in psoriatic keratinocytes markedly reduces differentiation, while it upregulates psoriatic markers such as survivin and K16. However, under high-calcium conditions, E-FABP silencing downregulates K10 and involucrin, while survivin and K16 expression is completely abolished. These data strongly indicate that E-FABP plays an important role in keratinocyte differentiation. Moreover, E-FABP modulates differentiation in psoriatic keratinocytes
    • …
    corecore