4 research outputs found

    Vestibular anomalies and dysfunctions in children with inner ear malformations: A narrative review

    Get PDF
    About 20% of children with congenital hearing loss present malformations of the inner ear. In the past few years much has been understood about the morphology and function of the anterior part of the labyrinth, since hearing loss may have a dramatic effect on the overall development of a child. Nowadays, for most of them, a chance for hearing rehabilitation is available, making hearing loss a treatable condition. The anomalies range from the lack of development of the whole inner ear to specific anomalies of isolated structures. Despite the frequent concomitant involvement of the posterior part of the labyrinth, this part of the inner ear is frequently neglected while discussing its morphology and dysfunction. Even though vestibular and balance function/dysfunction may have a significant impact on the global development of children, very little is known about these specific disorders in patients with inner ear malformations. The aim of this review is to summarize the available literature about vestibular anomalies and dysfunctions in children with inner ear malformations, discussing what is currently known about the topic

    Genetics of Inner Ear Malformations: A Review

    No full text
    Inner ear malformations are present in 20% of patients with sensorineural hearing loss. Although the first descriptions date to the 18th century, in recent years the knowledge about these conditions has experienced terrific improvement. Currently, most of these conditions have a rehabilitative option. Much less is known about the etiology of these anomalies. In particular, the evolution of genetics has provided new data about the possible relationship between inner ear malformations and genetic anomalies. In addition, in syndromic condition, the well-known presence of sensorineural hearing loss can now be attributed to the presence of an inner ear anomaly. In some cases, the presence of these abnormalities should be considered as a characteristic feature of the syndrome. The present paper aims to summarize the available knowledge about the possible relationships between inner ear malformations and genetic mutations

    Audiological phenotypes of connexin gene mutation patterns: A glance on different GJB2/GJB6 gene mutation profiles

    No full text
    GJB2 mutations are the most common cause of autosomal-recessive non-syndromic sensorineural hearing loss (SNHL). The available evidence shows large phenotypic variability across different genotypes and allelic variants. The aim of this study was to investigate the clinical and audiological features of a cohort of subjects with different GJB2/GJB6 gene mutation profiles from a tertiary referral center in Northeastern Italy. We considered 57 patients with GJB2/GJB6 mutations presenting with congenital, non-syndromic SNHL, mainly coming from the Veneto region (Italy). The samples were screened for mutations in exons 1 and 2 of the GJB2 gene and for the GJB6 gene deletion del (GJB6-D13S1830). Free-field and air-conduction frequency-specific thresholds and the pure-tone average (PTA) were considered in the statistical analysis. Five patients (8.87%) had connexin gene mutations in simple heterozygosis, 15 (26.31%) in compound heterozygosis, 34 (59.64%) in homozygosis, and 3 (5.26%) with digenic patterns. The frequency-specific airconduction thresholds showed significantly different mean values across the different genotypes (Roy’s largest-root test, p = 0.0473). Despite the evidence already available on genetic SNHL, many new insights are to be expected. Further large-scale prospective studies including different populations are necessary to confirm these preliminary findings about the clinical and audiological features of patients with different GJB2/GJB6 gene mutation patterns

    Audiological Phenotypes of Connexin Gene Mutation Patterns: A Glance at Different GJB2/GJB6 Gene Mutation Profiles

    No full text
    GJB2 mutations are the most common cause of autosomal-recessive non-syndromic sensorineural hearing loss (SNHL). The available evidence shows large phenotypic variability across different genotypes and allelic variants. The aim of this study was to investigate the clinical and audiological features of a cohort of subjects with different GJB2/GJB6 gene mutation profiles from a tertiary referral center in Northeastern Italy. We considered 57 patients with GJB2/GJB6 mutations presenting with congenital, non-syndromic SNHL, mainly coming from the Veneto region (Italy). The samples were screened for mutations in exons 1 and 2 of the GJB2 gene and for the GJB6 gene deletion del (GJB6-D13S1830). Free-field and air-conduction frequency-specific thresholds and the pure-tone average (PTA) were considered in the statistical analysis. Five patients (8.87%) had connexin gene mutations in simple heterozygosis, 15 (26.31%) in compound heterozygosis, 34 (59.64%) in homozygosis, and 3 (5.26%) with digenic patterns. The frequency-specific air-conduction thresholds showed significantly different mean values across the different genotypes (Roy’s largest-root test, p = 0.0473). Despite the evidence already available on genetic SNHL, many new insights are to be expected. Further large-scale prospective studies including different populations are necessary to confirm these preliminary findings about the clinical and audiological features of patients with different GJB2/GJB6 gene mutation patterns
    corecore