41 research outputs found

    Preference and behavior : A response to Buss

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29157/1/0000202.pd

    Fat, sex, class, adaptive flexibility, and cultural change

    Full text link
    In modern industrial nations, the traditional positive correlation between female body fat and social class has turned strongly inverse, thinness in women is admired and plumpness is a handicap. This recent reversal of what had seemed to be stable aspects of human nature is analyzed as a potentially adaptive response to two ecological novelties: chronic food surplus and the breakdown of barriers between men's and women's work, which, together, may have made thinness helpful to women competing for status and resources in both mating and job markets. Whether status and resources still promote long-term Darwinian fitness is an open question. Progress in understanding the unique properties of the human mind depends on widespread recognition that the mind has been designed by natural selection to seek and sometimes find adaptive solutions to the novel problems we ourselves create. Adaptive flexibility and cultural change are two sides of the same coin.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29883/1/0000236.pd

    The present also explains the past : A response to Tooby and Cosmides

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29423/1/0000502.pd

    Characterization of mtDNA variation in a cohort of South African paediatric patients with mitochondrial disease

    Get PDF
    Mitochondrial disease can be attributed to both mitochondrial and nuclear gene mutations. It has a heterogeneous clinical and biochemical profile, which is compounded by diversity of the genetic background. Disease-based epidemiological information has expanded significantly in recent decades, but little information is known that clarifies the aetiology in African patients. The aim of this study was to investigate mitochondrial DNA variation and pathogenic mutations in muscle of diagnosed paediatric patients from South Africa. A cohort of 71 South African paediatric patients was included and a high-throughput nucleotide sequencing approach was used to sequence full-length muscle mtDNA. The average coverage of the mtDNA genome was 81 ± 26 per position. After assigning haplogroups, it was determined that although the nature of non-haplogroup defining variants was similar in African and non-African haplogroup patients, the number of substitutions were significantly higher in African patients. We describe previously reported disease-associated and novel variants in this cohort. We observed a general lack of commonly reported syndrome-associated mutations, which supports clinical observations and confirms general observations in African patients when using single mutation screening strategies based on (predominantly non-African) mtDNA disease-based information. It is finally concluded that this first extensive report on muscle mtDNA sequences in African paediatric patients highlights the need for a full length mtDNA sequencing strategy, which applies to all populations where specific mutations is not present. This, in addition to nuclear DNA gene mutation and pathogenicity evaluations, will be required to better unravel the aetiology of these disorders in African patients.http://www.nature.com/ejhg/index.htm

    International Paediatric Mitochondrial Disease Scale

    Get PDF
    Objective: There is an urgent need for reliable and universally applicable outcome measures for children with mitochondrial diseases. In this study, we aimed to adapt the currently available Newcastle Paediatric Mitochondrial Disease Scale (NPMDS) to the International Paediatric Mitochondrial Disease Scale (IPMDS) during a Delphi-based process with input from international collaborators, patients and caretakers, as well as a pilot reliability study in eight patients. Subsequently, we aimed to test the feasibility, construct validity and reliability of the IPMDS in a multicentre study. Methods: A clinically, biochemically and genetically heterogeneous group of 17 patients (age 1.6–16 years) from five different expert centres from four different continents were evaluated in this study. Results: The feasibility of the IPMDS was good, as indicated by a low number of missing items (4 %) and the positive evaluation of patients, parents and users. Principal component analysis of our small sample identified three factors, which explained 57.9 % of the variance. Good construct validity was found using hypothesis testing. The overall interrater reliability was good [median intraclass correlation coefficient for agreement between raters (ICCagreement) 0.85; range 0.23–0.99). Conclusion: In conclusion, we suggest using the IPMDS for assessing natural history in children with mitochondrial diseases. These data should be used to further explore construct validity of the IPMDS and to set age limits. In parallel, responsiveness and the minimal clinically important difference should be studied to facilitate sample size calculations in future clinical trials

    Clinical, biochemical, and genetic spectrum of MADD in a South African cohort : an ICGNMD study

    Get PDF
    AVAILABILITY OF DATA AND MATERIALS : Previous data and samples were made available by the Centre for Human Metabolomics (NWU), SU, and UCT. New samples were collected with the help of paediatric and adult neurologists via Steve Biko Academic Hospital, Tygerberg Hospital, and Red Cross War Memorial Children’s Hospital. The datasets generated and/or analysed during the current study are not publicly available due to the data sharing policy of the ICGNMD study, but are available from the corresponding author on reasonable request.ADDITIONAL FILE 1 : Additional Clinical Information.ADDITIONAL FILE 2 : Additional Metabolic Information.ADDITIONAL FILE 3 : Additional Structural Information.BACKGROUND : Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder resulting from pathogenic variants in three distinct genes, with most of the variants occurring in the electron transfer flavoprotein-ubiquinone oxidoreductase gene (ETFDH). Recent evidence of potential founder variants for MADD in the South African (SA) population, initiated this extensive investigation. As part of the International Centre for Genomic Medicine in Neuromuscular Diseases study, we recruited a cohort of patients diagnosed with MADD from academic medical centres across SA over a three-year period. The aim was to extensively profile the clinical, biochemical, and genomic characteristics of MADD in this understudied population. METHODS : Clinical evaluations and whole exome sequencing were conducted on each patient. Metabolic profiling was performed before and after treatment, where possible. The recessive inheritance and phase of the variants were established via segregation analyses using Sanger sequencing. Lastly, the haplotype and allele frequencies were determined for the two main variants in the four largest SA populations. RESULTS : Twelve unrelated families (ten of White SA and two of mixed ethnicity) with clinically heterogeneous presentations in 14 affected individuals were observed, and five pathogenic ETFDH variants were identified. Based on disease severity and treatment response, three distinct groups emerged. The most severe and fatal presentations were associated with the homozygous c.[1067G > A];c.[1067G > A] and compound heterozygous c.[976G > C];c.[1067G > A] genotypes, causing MADD types I and I/II, respectively. These, along with three less severe compound heterozygous genotypes (c.[1067G > A];c.[1448C > T], c.[740G > T];c.[1448C > T], and c.[287dupA*];c.[1448C > T]), resulting in MADD types II/III, presented before the age of five years, depending on the time and maintenance of intervention. By contrast, the homozygous c.[1448C > T];c.[1448C > T] genotype, which causes MADD type III, presented later in life. Except for the type I, I/II and II cases, urinary metabolic markers for MADD improved/normalised following treatment with riboflavin and L-carnitine. Furthermore, genetic analyses of the most frequent variants (c.[1067G > A] and c.[1448C > T]) revealed a shared haplotype in the region of ETFDH, with SA population-specific allele frequencies of < 0.00067–0.00084%. CONCLUSIONS : This study reveals the first extensive genotype–phenotype profile of a MADD patient cohort from the diverse and understudied SA population. The pathogenic variants and associated variable phenotypes were characterised, which will enable early screening, genetic counselling, and patient-specific treatment of MADD in this population.Open access funding provided by North-West University. A Medical Research Council (MRC) strategic award; the National Research Foundation (NRF) of South Africa; the South African Medical Research Council (SAMRC); the Wellcome Centre for Mitochondrial Research; the Mitochondrial Disease Patient Cohort (UK); the Medical Research Council International Centre for Genomic Medicine in Neuromuscular Disease; the Lily Foundation; the UK NIHR Biomedical Research Centre for Ageing and Age-related Disease award to the Newcastle upon Tyne Foundation Hospitals NHS Trust; the UK NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children; the MRC; Mito Foundation, and the Pathological Society (UK).https://ojrd.biomedcentral.comhj2024Paediatrics and Child HealthNon

    Neuromuscular disease genetics in under-represented populations: increasing data diversity

    Get PDF
    Neuromuscular diseases (NMDs) affect ∼15 million people globally. In high income settings DNA-based diagnosis has transformed care pathways and led to gene-specific therapies. However, most affected families are in low-to-middle income countries (LMICs) with limited access to DNA-based diagnosis. Most (86%) published genetic data is derived from European ancestry. This marked genetic data inequality hampers understanding of genetic diversity and hinders accurate genetic diagnosis in all income settings. We developed a cloud-based transcontinental partnership to build diverse, deeply-phenotyped and genetically characterized cohorts to improve genetic architecture knowledge, and potentially advance diagnosis and clinical management. We connected 18 centres in Brazil, India, South Africa, Turkey, Zambia, Netherlands and the UK. We co-developed a cloud-based data solution and trained 17 international neurology fellows in clinical genomic data interpretation. Single gene and whole exome data were analysed via a bespoke bioinformatics pipeline and reviewed alongside clinical and phenotypic data in global webinars to inform genetic outcome decisions. We recruited 6001 participants in the first 43 months. Initial genetic analyses ‘solved’ or ‘possibly solved’ ∼56% probands overall. In-depth genetic data review of the four commonest clinical categories (limb girdle muscular dystrophy, inherited peripheral neuropathies, congenital myopathy/muscular dystrophies and Duchenne/Becker muscular dystrophy) delivered a ∼59% ‘solved’ and ∼13% ‘possibly solved’ outcome. Almost 29% of disease causing variants were novel, increasing diverse pathogenic variant knowledge. Unsolved participants represent a new discovery cohort. The dataset provides a large resource from under-represented populations for genetic and translational research. In conclusion, we established a remote transcontinental partnership to assess genetic architecture of NMDs across diverse populations. It supported DNA-based diagnosis, potentially enabling genetic counselling, care pathways and eligibility for gene-specific trials. Similar virtual partnerships could be adopted by other areas of global genomic neurological practice to reduce genetic data inequality and benefit patients globally

    Rebuffing Royals? Afrikaners and the royal visit to South Africa in 1947’

    Get PDF
    This article traces the responses of Afrikaners to the symbolism and political purposes of the 1947 royal visit to Southern Africa, the first post-war royal tour and the first visit of a reigning sovereign to the Union of South Africa. Taking place in the aftermath of a war that had caused bitter political divisions within Afrikaner ranks and stimulated radical populist nationalism, a royal tour intended to express the crown's gratitude for South Africa's participation in that war was bound to be contentious. Drawing on press accounts, biographies, autobiographies and archival sources, this article argues that the layered reactions of Afrikaners demonstrate that, even on the eve of the National Party's electoral victory on a republican and apartheid platform, attitudes towards monarchy and the British connection were more fluid and ambiguous than either contemporary propaganda or recent accounts have allowed. The diverse meanings attributed to this iconic royal tour reveal a process of intense contestation and reflection about South Africa's place in an empire that was in the throes of post-war redefinition and transformation, and confirm recent characterisations of the 1940s as one of manifold possibilities such that outcomes, like the electoral victory of the National Party in the following year, was far from pre-determined

    Neuromuscular disease genetics in underrepresented populations : increasing data diversity

    Get PDF
    DATA AVAILABILITY : At the end of the study, participants de-identified exome and genome data will be archived in the European Molecular Biology Laboratory European Bioinformatics Institute’s European Genome-Phenome Archive (EMBL EBI EGA), with community access to this and selected de-identified REDCap data managed via an ICGNMD Data Access Committee.Neuromuscular diseases (NMDs) affect ∼15 million people globally. In high income settings DNA-based diagnosis has transformed care pathways and led to gene-specific therapies. However, most affected families are in low-to-middle income countries (LMICs) with limited access to DNA-based diagnosis. Most (86%) published genetic data is derived from European ancestry. This marked genetic data inequality hampers understanding of genetic diversity and hinders accurate genetic diagnosis in all income settings. We developed a cloud-based transcontinental partnership to build diverse, deeply-phenotyped and genetically characterized cohorts to improve genetic architecture knowledge, and potentially advance diagnosis and clinical management. We connected 18 centres in Brazil, India, South Africa, Turkey, Zambia, Netherlands and the UK. We co-developed a cloud-based data solution and trained 17 international neurology fellows in clinical genomic data interpretation. Single gene and whole exome data were analysed via a bespoke bioinformatics pipeline and reviewed alongside clinical and phenotypic data in global webinars to inform genetic outcome decisions. We recruited 6001 participants in the first 43 months. Initial genetic analyses 'solved' or 'possibly solved' ∼56% probands overall. In-depth genetic data review of the four commonest clinical categories (limb girdle muscular dystrophy, inherited peripheral neuropathies, congenital myopathy/muscular dystrophies and Duchenne/Becker muscular dystrophy) delivered a ∼59% 'solved' and ∼13% 'possibly solved' outcome. Almost 29% of disease causing variants were novel, increasing diverse pathogenic variant knowledge. Unsolved participants represent a new discovery cohort. The dataset provides a large resource from under-represented populations for genetic and translational research. In conclusion, we established a remote transcontinental partnership to assess genetic architecture of NMDs across diverse populations. It supported DNA-based diagnosis, potentially enabling genetic counselling, care pathways and eligibility for gene-specific trials. Similar virtual partnerships could be adopted by other areas of global genomic neurological practice to reduce genetic data inequality and benefit patients globally.This work was supported by a Medical Research Council strategic award to establish an International Centre for Genomic Medicine in Neuromuscular Diseases (ICGNMD) MR/S005021/1. Additional ICGNMD support including travel and subsistence costs was received from the National Brain Appeal (UK Charity 290173) and University College London Global Engagement Funds. Fellowships for R.S.S.F. and K.N. were funded by the Guarantors of Brain (UK Charity 1197319). The authors acknowledge and are grateful for: conference bursaries from the World Muscle Society to R.S.S.F. S.R., K.N., O.Y.K., P.J.T., V.V.Y. S.V.D.M. and R.L. are members of the European Reference Network for Rare Neuromuscular Diseases (ERN EURO-MND). M.P.K.: National Institute of Neurological Disorders and Stroke (1K23NS112463), American Association of Neuromuscular & Electrodiagnostic Medicine Development Award and Allen Foundation. D.B.: National Institute of Neurological Disorders and Stroke (K23NS117310) and support from Biogen for the KCTN1 Natural History Study. G.M.R.: University College London and UCLH Biomedical Research Centre funding, Health Education England and University College London Hospitals NHS Foundation Trust Innovation Fund. R.M.F., R.W.T. and K.P.: Wellcome core support (203105/Z/16/Z). R.M.F. received additional support from the Lily Foundation and the Leigh Syndrome International Consortium. A.T.: EU Horizon 2020 research and innovation Solve-RD project, No. 779257. F.H.W., M.S., M.B. and A.V.: South African Medical Research Council award ‘The genetics of Neuromuscular Diseases in South African patient populations: the ICGNMD study’. K.T. is funded by a J. C. Bose Fellowship, Science and Engineering Research Board (SERB) Department of Science and Technology, India. P.G. is supported by the Centre for DNA Fingerprinting and Diagnostics (CDFD) Core Research Grant, Department of Biotechnology, Government of India. R.H.: Wellcome award 109915/Z/15/Z, UK Medical Research Council award MR/N025431/1, the Lily Foundation, Evelyn Trust Research Grant (Ref 19/14), Action for A-T and UK Research and Innovation Newton Fund (MR/NO27302/1). P.F.C.: Wellcome awards 212219/Z/18/Z and 224486/Z/21/Z, UK Medical Research Council awards MC_PC_21046, MR/S035699/1 and MR/ S01165X/1, LifeArc Philanthropic Fund, NIHR BioResource for Translational Research in Common and Rare Diseases, Alzheimer’s Society, NIHR BioResource for Genes and Cognition and Leverhulme Trust. R.D.S.P.: UK Medical Research Council MR/ S002065/1 and MC_PC_21046, and the Lily Foundation. H.H.: UK Medical Research Council, Wellcome, UCLH Biomedical Research Centre (NIHR-BRC), Rosetrees Trust, and SOLVE-RD. M.M.R.: Wellcome grant G104817, National Institute of Neurological Disorders and Stroke and Office of Rare Diseases grants U54NS065712 and 1UOINS109403-01 and Muscular Dystrophy Association grant.https://www.edusoft.ro/brain/index.php/brainam2024Paediatrics and Child HealthSDG-03:Good heatlh and well-bein

    Social Bonding and Nurture Kinship: Compatibility between Cultural and Biological Approaches

    Full text link
    corecore