62 research outputs found
A Place to Call Home: Amphibian Use of Created and Restored Wetlands
Loss and degradation of wetland habitats are major contributing factors to the global decline of amphibians. Creation and restoration of wetlands could be a valuable tool for increasing local amphibian species richness and abundance. We synthesized the peer-reviewed literature addressing amphibian use of created and restored wetlands, focusing on aquatic habitat, upland habitat, and wetland connectivity and configuration. Amphibian species richness or abundance at created and restored wetlands was either similar to or greater than reference wetlands in 89% of studies. Use of created and restored wetlands by individual species was driven by aquatic and terrestrial habitat preferences, as well as ability to disperse from source wetlands. We conclude that creating and restoring wetlands can be valuable tools for amphibian conservation. However, the ecological needs and preferences of target species must be considered to maximize the potential for successful colonization and long-term persistence
TrES-3: A Nearby, Massive, Transiting Hot Jupiter in a 31-Hour Orbit
We describe the discovery of a massive transiting hot Jupiter with a very
short orbital period (1.30619 d), which we name TrES-3. From spectroscopy of
the host star GSC 03089-00929, we measure T_eff = 5720 +- 150 K, logg=4.6 +-
0.3, and vsini < 2 km/s, and derive a stellar mass of 0.90 +- 0.15 M_sun. We
estimate a planetary mass of 1.92 +- 0.23 M_Jup, based on the sinusoidal
variation of our high-precision radial velocity measurements. This variation
has a period and phase consistent with our transit photometry. Our spectra show
no evidence of line bisector variations that would indicate a blended eclipsing
binary star. From detailed modeling of our B and z photometry of the 2.5%-deep
transits, we determine a stellar radius 0.802 +- 0.046 R_sun and a planetary
radius 1.295 +- 0.081 R_Jup. TrES-3 has one of the shortest orbital periods of
the known transiting exoplanets, facilitating studies of orbital decay and mass
loss due to evaporation, and making it an excellent target for future studies
of infrared emission and reflected starlight.Comment: v1. 14 pages, 2 figures, 3 tables. Submitted to ApJL 27 April 2007.
Accepted for publication in ApJL 14 May 200
In the dedicated pursuit of dedicated capital: restoring an indigenous investment ethic to British capitalism
Tony Blairâs landslide electoral victory on May 1 (New Labour Day?) presents the party in power with a rare, perhaps even unprecedented, opportunity to revitalise and modernise Britainâs ailing and antiquated manufacturing economy.* If it is to do so, it must remain true to its long-standing (indeed, historic) commitment to restore an indigenous investment ethic to British capitalism. In this paper we argue that this in turn requires that the party reject the very neo-liberal orthodoxies which it offered to the electorate as evidence of its competence, moderation and âmodernisationâ, which is has internalised, and which it apparently now views as circumscribing the parameters of the politically and economically possible
Approaches in biotechnological applications of natural polymers
Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento CientfĂico e TecnolĂłgico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de NvĂel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
Prediction of Optical and Non-Optical Water Quality Parameters in Oligotrophic and Eutrophic Aquatic Systems Using a Small Unmanned Aerial System
The purpose of this study was to create different statistically reliable predictive algorithms for trophic state or water quality for optical (total suspended solids (TSS), Secchi disk depth (SDD), and chlorophyll-a (Chl-a)) and non-optical (total phosphorus (TP) and total nitrogen (TN)) water quality variables or indicators in an oligotrophic system (Grand River Dam Authority (GRDA) Duck Creek Nursery Ponds) and a eutrophic system (City of Commerce, Oklahoma, Wastewater Lagoons) using remote sensing images from a small unmanned aerial system (sUAS) equipped with a multispectral imaging sensor. To develop these algorithms, two sets of data were acquired: (1) In-situ water quality measurements and (2) the spectral reflectance values from sUAS imagery. Reflectance values for each band were extracted under three scenarios: (1) Value to point extraction, (2) average value extraction around the stations, and (3) point extraction using kriged surfaces. Results indicate that multiple variable linear regression models in the visible portion of the electromagnetic spectrum best describe the relationship between TSS (R2 = 0.99, p-value = <0.01), SDD (R2 = 0.88, p-value = <0.01), Chl-a (R2 = 0.85, p-value = <0.01), TP (R2 = 0.98, p-value = <0.01) and TN (R2 = 0.98, p-value = <0.01). In addition, this study concluded that ordinary kriging does not improve the fit between the different water quality parameters and reflectance values
Modulation of the NOTCH1 Pathway by LUNATIC FRINGE Is Dominant over That of MANIC or RADICAL FRINGE
Fringes are glycosyltransferases that transfer a GlcNAc to O-fucose residues on Epidermal Growth Factor-like (EGF) repeats. Three Fringes exist in mammals: LUNATIC FRINGE (LFNG), MANIC FRINGE (MFNG), and RADICAL FRINGE (RFNG). Fringe modification of O-fucose on EGF repeats in the NOTCH1 (N1) extracellular domain modulates the activation of N1 signaling. Not all O-fucose residues of N1 are modified by all Fringes; some are modified by one or two Fringes and others not modified at all. The distinct effects on N1 activity depend on which Fringe is expressed in a cell. However, little data is available on the effect that more than one Fringe has on the modification of O-fucose residues and the resulting downstream consequence on Notch activation. Using mass spectral glycoproteomic site mapping and cell-based N1 signaling assays, we compared the effect of co-expression of N1 with one or more Fringes on modification of O-fucose and activation of N1 in three cell lines. Individual expression of each Fringe with N1 in the three cell lines revealed differences in modulation of the Notch pathway dependent on the presence of endogenous Fringes. Despite these cell-based differences, co-expression of several Fringes with N1 demonstrated a dominant effect of LFNG over MFNG or RFNG. MFNG and RFNG appeared to be co-dominant but strongly dependent on the ligands used to activate N1 and on the endogenous expression of Fringes. These results show a hierarchy of Fringe activity and indicate that the effect of MFNG and/or RFNG could be small in the presence of LFNG
ANALYSIS OF MUNICIPAL WASTEWATER AND ACID MINE DRAINAGE PASSIVE CO-TREATMENT AT CERRO RICO DE POTOSĂ, BOLIVIA
Acid mine drainage (AMD) is a worldwide environmental problem. The passive co-treatment of AMD with municipal waste water (MWW) is a cost effective approach that uses nutrients in MWW in order to treat high concentrations of metals and sulfate found in AMD. Cerro Rico de PotosĂ in Bolivia is one of the biggest mining cities in the world, and it is constantly facing problems with AMD. The goal of this study was to determine the reaction rates of Al, Fe, Mn, Zn, and other metals found in an AMD discharge from Cerro Rico by a three-stage reactor system. The AMD had a pH of 3.58 and acidity of 1080 mg/L as CaCO3 equivalent containing 12, 68, 17 and 550 mg/L of dissolved Al, Fe, Mn, and Zn respectively. The reaction rates of Al, Fe, Mn, and Zn were 1.43, 2.09, 0.01, and 0.10 d-1, respectively
- âŠ