294 research outputs found
Primary ciliary dyskinesia with normal ultrastructure:three-dimensional tomography detects absence of DNAH11
In primary ciliary dyskinesia (PCD), motile ciliary dysfunction arises from ciliary defects usually confirmed by transmission electron microscopy (TEM). In 30% of patients, such as those with DNAH11 mutations, apparently normal ultrastructure makes diagnosis difficult. Genetic analysis supports diagnosis, but may not identify definitive causal variants. Electron tomography, an extension of TEM, produces three-dimensional ultrastructural ciliary models with superior resolution to TEM. Our hypothesis is that tomography using existing patient samples will enable visualisation of DNAH11-associated ultrastructural defects. Dual axis tomograms from araldite-embedded nasal cilia were collected in 13 PCD patients with normal ultrastructure (DNAH11 n=7, HYDIN n=2, CCDC65 n=3 and DRC1 n=1) and six healthy controls, then analysed using IMOD and Chimera software.
DNAH11 protein is localised to the proximal ciliary region. Within this region, electron tomography indicated a deficiency of >25% of proximal outer dynein arm volume in all patients with DNAH11 mutations (n=7) compared to other patients with PCD and normal ultrastructure (n=6) and healthy controls (n=6). DNAH11 mutations cause a shared abnormality in ciliary ultrastructure previously undetectable by TEM. Advantageously, electron tomography can be used on existing diagnostic samples and establishes a structural abnormality where ultrastructural studies were previously normal
The Three-Point Correlation Function of Luminous Red Galaxies in the Sloan Digital Sky Survey
We present measurements of the redshift-space three-point correlation
function of 50,967 Luminous Red Galaxies (LRGs) from Data Release 3 (DR3) of
the Sloan Digital Sky Survey (SDSS). We have studied the shape dependence of
the reduced three-point correlation function (Qz(s,q,theta)) on three different
scales, s=4, 7 and 10 h-1 Mpc, and over the range of 1 < q < 3 and 0 < theta <
180. On small scales (s=4 h-1 Mpc), Qz is nearly constant, with little change
as a function of q and theta. However, there is evidence for a shallow U-shaped
behaviour (with theta) which is expected from theoretical modeling of Qz . On
larger scales (s=7 and 10 h-1 Mpc), the U-shaped anisotropy in Qz (with theta)
is more clearly detected. We compare this shape-dependence in Qz(s,q,theta)
with that seen in mock galaxy catalogues which were generated by populating the
dark matter halos in large N-body simulations with mock galaxies using various
Halo Occupation Distributions (HOD). We find that the combination of the
observed number density of LRGs, the (redshift-space) two-point correlation
function and Qz provides a strong constraint on the allowed HOD parameters
(M_min, M_1, alpha) and breaks key degeneracies between these parameters. For
example, our observed Qz disfavors mock catalogues that overpopulate massive
dark matter halos with many LRG satellites. We also estimate the linear bias of
LRGs to be b=1.87+/-0.07 in excellent agreement with other measurements.Comment: 14 pages. Accepted for publication to the MNRAS. Data accompanying
paper can be found at http://www.dsg.port.ac.uk/~nicholb/3pt/kulkarni
The Milky Way's circular velocity curve between 4 and 14 kpc from APOGEE data
We measure the Milky Way's rotation curve over the Galactocentric range 4 kpc
<~ R <~ 14 kpc from the first year of data from the Apache Point Observatory
Galactic Evolution Experiment (APOGEE). We model the line-of-sight velocities
of 3,365 stars in fourteen fields with b = 0 deg between 30 deg < l < 210 deg
out to distances of 10 kpc using an axisymmetric kinematical model that
includes a correction for the asymmetric drift of the warm tracer population
(\sigma_R ~ 35 km/s). We determine the local value of the circular velocity to
be V_c(R_0) = 218 +/- 6 km/s and find that the rotation curve is approximately
flat with a local derivative between -3.0 km/s/kpc and 0.4 km/s/kpc. We also
measure the Sun's position and velocity in the Galactocentric rest frame,
finding the distance to the Galactic center to be 8 kpc < R_0 < 9 kpc, radial
velocity V_{R,sun} = -10 +/- 1 km/s, and rotational velocity V_{\phi,sun} =
242^{+10}_{-3} km/s, in good agreement with local measurements of the Sun's
radial velocity and with the observed proper motion of Sgr A*. We investigate
various systematic uncertainties and find that these are limited to offsets at
the percent level, ~2 km/s in V_c. Marginalizing over all the systematics that
we consider, we find that V_c(R_0) 99% confidence. We find an
offset between the Sun's rotational velocity and the local circular velocity of
26 +/- 3 km/s, which is larger than the locally-measured solar motion of 12
km/s. This larger offset reconciles our value for V_c with recent claims that
V_c >~ 240 km/s. Combining our results with other data, we find that the Milky
Way's dark-halo mass within the virial radius is ~8x10^{11} M_sun.Comment: submitted to Ap
Risk factors for situs defects and congenital heart disease in primary ciliary dyskinesia
Primary ciliary dyskinesia (PCD) is associated with abnormal organ positioning (situs) and congenital heart disease (CHD). This study investigated genotype–phenotype associations in PCD to facilitate risk predictions for cardiac and laterality defects. This retrospective cohort study of 389 UK patients with PCD found 51% had abnormal situs and 25% had CHD and/or laterality defects other than situs inversus totalis. Patients with biallelic mutations in a subset of nine PCD genes had normal situs. Patients with consanguineous parents had higher odds of situs abnormalities than patients with non-consanguineous parents. Patients with abnormal situs had higher odds of CHD and/or laterality defects
Modulation of RNA splicing enhances response to BCL2 inhibition in leukemia.
Therapy resistance is a major challenge in the treatment of cancer. Here, we performed CRISPR-Cas9 screens across a broad range of therapies used in acute myeloid leukemia to identify genomic determinants of drug response. Our screens uncover a selective dependency on RNA splicing factors whose loss preferentially enhances response to the BCL2 inhibitor venetoclax. Loss of the splicing factor RBM10 augments response to venetoclax in leukemia yet is completely dispensable for normal hematopoiesis. Combined RBM10 and BCL2 inhibition leads to mis-splicing and inactivation of the inhibitor of apoptosis XIAP and downregulation of BCL2A1, an anti-apoptotic protein implicated in venetoclax resistance. Inhibition of splicing kinase families CLKs (CDC-like kinases) and DYRKs (dual-specificity tyrosine-regulated kinases) leads to aberrant splicing of key splicing and apoptotic factors that synergize with venetoclax, and overcomes resistance to BCL2 inhibition. Our findings underscore the importance of splicing in modulating response to therapies and provide a strategy to improve venetoclax-based treatments
First-year Sloan Digital Sky Survey-II (SDSS-II) Supernova Results: Hubble Diagram and Cosmological Parameters
We present measurements of the Hubble diagram for 103 Type Ia supernovae
(SNe) with redshifts 0.04 < z < 0.42, discovered during the first season (Fall
2005) of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. These data
fill in the redshift "desert" between low- and high-redshift SN Ia surveys. We
combine the SDSS-II measurements with new distance estimates for published SN
data from the ESSENCE survey, the Supernova Legacy Survey, the Hubble Space
Telescope, and a compilation of nearby SN Ia measurements. Combining the SN
Hubble diagram with measurements of Baryon Acoustic Oscillations from the SDSS
Luminous Red Galaxy sample and with CMB temperature anisotropy measurements
from WMAP, we estimate the cosmological parameters w and Omega_M, assuming a
spatially flat cosmological model (FwCDM) with constant dark energy equation of
state parameter, w. For the FwCDM model and the combined sample of 288 SNe Ia,
we find w = -0.76 +- 0.07(stat) +- 0.11(syst), Omega_M = 0.306 +- 0.019(stat)
+- 0.023(syst) using MLCS2k2 and w = -0.96 +- 0.06(stat) +- 0.12(syst), Omega_M
= 0.265 +- 0.016(stat) +- 0.025(syst) using the SALT-II fitter. We trace the
discrepancy between these results to a difference in the rest-frame UV model
combined with a different luminosity correction from color variations; these
differences mostly affect the distance estimates for the SNLS and HST
supernovae. We present detailed discussions of systematic errors for both
light-curve methods and find that they both show data-model discrepancies in
rest-frame -band. For the SALT-II approach, we also see strong evidence for
redshift-dependence of the color-luminosity parameter (beta). Restricting the
analysis to the 136 SNe Ia in the Nearby+SDSS-II samples, we find much better
agreement between the two analysis methods but with larger uncertainties.Comment: Accepted for publication by ApJ
The Fifth Data Release of the Sloan Digital Sky Survey
This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky
Survey (SDSS). DR5 includes all survey quality data taken through June 2005 and
represents the completion of the SDSS-I project (whose successor, SDSS-II will
continue through mid-2008). It includes five-band photometric data for 217
million objects selected over 8000 square degrees, and 1,048,960 spectra of
galaxies, quasars, and stars selected from 5713 square degrees of that imaging
data. These numbers represent a roughly 20% increment over those of the Fourth
Data Release; all the data from previous data releases are included in the
present release. In addition to "standard" SDSS observations, DR5 includes
repeat scans of the southern equatorial stripe, imaging scans across M31 and
the core of the Perseus cluster of galaxies, and the first spectroscopic data
from SEGUE, a survey to explore the kinematics and chemical evolution of the
Galaxy. The catalog database incorporates several new features, including
photometric redshifts of galaxies, tables of matched objects in overlap regions
of the imaging survey, and tools that allow precise computations of survey
geometry for statistical investigations.Comment: ApJ Supp, in press, October 2007. This paper describes DR5. The SDSS
Sixth Data Release (DR6) is now public, available from http://www.sdss.or
Clinical utility of NGS diagnosis and disease stratification in a multiethnic primary ciliary dyskinesia cohort
Background Primary ciliary dyskinesia (PCD), a genetically heterogeneous condition enriched in some consanguineous populations, results from recessive mutations affecting cilia biogenesis and motility. Currently, diagnosis requires multiple expert tests.Methods The diagnostic utility of multigene panel next-generation sequencing (NGS) was evaluated in 161 unrelated families from multiple population ancestries.Results Most (82%) families had affected individuals with biallelic or hemizygous (75%) or single (7%) pathogenic causal alleles in known PCD genes. Loss-of-function alleles dominate (73% frameshift, stop-gain, splice site), most (58%) being homozygous, even in non-consanguineous families. Although 57% (88) of the total 155 diagnostic disease variants were novel, recurrent mutations and mutated genes were detected. These differed markedly between white European (52% of families carry DNAH5 or DNAH11 mutations), Arab (42% of families carry CCDC39 or CCDC40 mutations) and South Asian (single LRRC6 or CCDC103 mutations carried in 36% of families) patients, revealing a striking genetic stratification according to population of origin in PCD. Genetics facilitated successful diagnosis of 81% of families with normal or inconclusive ultrastructure and 67% missing prior ultrastructure results.Conclusions This study shows the added value of high-throughput targeted NGS in expediting PCD diagnosis. Therefore, there is potential significant patient benefit in wider and/or earlier implementation of genetic screening
Nevirapine- Versus Lopinavir/Ritonavir-Based Initial Therapy for HIV-1 Infection among Women in Africa: A Randomized Trial
In a randomized control trial, Shahin Lockman and colleagues compare nevirapine-based therapy with lopinavir/ritonavir-based therapy for HIV-infected women without previous exposure to antiretroviral treatment
Aquaporin 5 Polymorphisms and Rate of Lung Function Decline in Chronic Obstructive Pulmonary Disease
RATIONALE: Aquaporin-5 (AQP5) can cause mucus overproduction and lower lung function. Genetic variants in the AQP5 gene might be associated with rate of lung function decline in chronic obstructive pulmonary disease (COPD). METHODS: Five single nucleotide polymorphisms (SNPs) in AQP5 were genotyped in 429 European American individuals with COPD randomly selected from the NHLBI Lung Health Study. Mean annual decline in FEV(1) % predicted, assessed over five years, was calculated as a linear regression slope, adjusting for potential covariates and stratified by smoking status. Constructs containing the wildtype allele and risk allele of the coding SNP N228K were generated using site-directed mutagenesis, and transfected into HBE-16 (human bronchial epithelial cell line). AQP5 abundance and localization were assessed by immunoblots and confocal immunofluorescence under control, shear stress and cigarette smoke extract (CSE 10%) exposed conditions to test for differential expression or localization. RESULTS: Among continuous smokers, three of the five SNPs tested showed significant associations (0.02>P>0.004) with rate of lung function decline; no associations were observed among the group of intermittent or former smokers. Haplotype tests revealed multiple association signals (0.012>P>0.0008) consistent with the single-SNP results. In HBE16 cells, shear stress and CSE led to a decrease in AQP5 abundance in the wild-type, but not in the N228K AQP5 plasmid. CONCLUSIONS: Polymorphisms in AQP5 were associated with rate of lung function decline in continuous smokers with COPD. A missense mutation modulates AQP-5 expression in response to cigarette smoke extract and shear stress. These results suggest that AQP5 may be an important candidate gene for COPD
- …