131 research outputs found
Optical Propagation and Communication
Contains summary of research and reports on four research projects.National Science Foundation (Grant ECS81-20637)U.S. Navy - Office of Naval Research (Contract N00014-81-K-0662)Maryland Procurement Office (Contract MDA904-84-C-6037)U.S. Army Research Office - Durham (Contract DAAG29-80-K-0022)U.S. Army Research Office - Durham (Contract DAAG29-84-K-0095)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0941
Optical Propagation and Communication
Contains research summary and reports on four research projects.National Science Foundation (Grant ECS81-20637)National Science Foundation (Grant ECS85-09143)Maryland Procurement Office (Contract MDA904-84-C-6037)National Science Foundation (Grant ECS84-15580)U.S. Army Research Office - Durham (Contract DAAG29-84-K-0095)U.S. Navy - Office of Naval Research (Contract NO0014-80-C-0941
Optical Propagation and Communication
Contains research summary and reports on four research projects.Maryland Procurement Office (Contract MDA 904-87-C-4044)National Science Foundation (Grant ECS 87-18970)U.S. Army Research Office (Contract DAAL03-87-K-0117)U.S. Navy - Office of Naval Research (Contract N0001 4-80-C-0941)U.S. Air Force - Office of Scientific Research (Contract F49620-87-C-0043
Optical Propagation and Communication
Contains an introduction and reports on four research projects.Maryland Procurement Office Contract MDA 904-87-C-4044National Science Foundation Grant ECS 87-18970U.S. Army Research Office - Durham Contract DAAL03-87-K-0117U.S. Navy - Office of Naval Research Grant N00014-89-J-1163U.S. Air Force - Office of Scientific Research Contract F49620-87-C-004
Optical Propagation and Communication
Contains research objectives and reports on four research projects.National Science Foundation (Grant ECS 85-09143)Maryland Procurement Office (Contract MDA 904-84-C-6037)National Science Foundation (Grant ECS 84-15580)U.S. Army Research Office - Durham (Contract DAAG29-84-K-0095)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0941
Optical Propagation and Communication
Contains research objectives and reports on six research projects.National Science Foundation (Grant ECS 85-09143)Maryland Procurement Office (Contract MDA 904-84-C-6037)Maryland Procurement Office (Contract MDA 904-87-C-4044)National Science Foundation (Grant ECS 84-15580)National Science Foundation (Grant INT-86-14329)U.S. Navy - Office of Naval Research (Contract N00014-87-G-0198)U.S. Army Research Office - Durham (Contract DAAG29-84-K-0095)U.S. Army Research Office - Durham (Contract DAALO3-87-K-0117)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0941_U.S. Air Force - Office of Scientific Research (Contract F49620-87-C-0043
An innovative integral field unit upgrade with 3D-printed micro-lenses for the RHEA at Subaru
In the new era of Extremely Large Telescopes (ELTs) currently under construction, challenging requirements drive spectrograph designs towards techniques that efficiently use a facility's light collection power. Operating in the single-mode (SM) regime, close to the diffraction limit, reduces the footprint of the instrument compared to a conventional high-resolving power spectrograph. The custom built injection fiber system with 3D-printed micro-lenses on top of it for the replicable high-resolution exoplanet and asteroseismology spectrograph at Subaru in combination with extreme adaptive optics of SCExAO, proved its high efficiency in a lab environment, manifesting up to ~77% of the theoretical predicted performance
Phenotypic spectrum and transcriptomic profile associated with germline variants in TRAF7
PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies
An immunodominant NP105-113-B*07:02 cytotoxic T cell response controls viral replication and is associated with less severe COVID-19 disease.
Funder: RCUK | Medical Research Council (MRC); doi: https://doi.org/10.13039/501100000265Funder: Chinese Academy of Medical Sciences (CAMS); doi: https://doi.org/10.13039/501100005150Funder: Wellcome Trust (Wellcome); doi: https://doi.org/10.13039/100004440NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design
- …