5,133 research outputs found

    On uniqueness of end sums and 1-handles at infinity

    Full text link
    For oriented manifolds of dimension at least 4 that are simply connected at infinity, it is known that end summing is a uniquely defined operation. Calcut and Haggerty showed that more complicated fundamental group behavior at infinity can lead to nonuniqueness. The present paper examines how and when uniqueness fails. Examples are given, in the categories TOP, PL and DIFF, of nonuniqueness that cannot be detected in a weaker category (including the homotopy category). In contrast, uniqueness is proved for Mittag-Leffler ends, and generalized to allow slides and cancellation of (possibly infinite) collections of 0- and 1-handles at infinity. Various applications are presented, including an analysis of how the monoid of smooth manifolds homeomorphic to R^4 acts on the smoothings of any noncompact 4-manifold.Comment: 25 pages, 8 figures. v2: Minor expository improvement

    Subdiffusive motion in kinetically constrained models

    Full text link
    We discuss a kinetically constrained model in which real-valued local densities fluctuate in time, as introduced recently by Bertin, Bouchaud and Lequeux. We show how the phenomenology of this model can be reproduced by an effective theory of mobility excitations propagating in a disordered environment. Both excitations and probe particles have subdiffusive motion, characterised by different exponents and operating on different time scales. We derive these exponents, showing that they depend continuously on one of the parameters of the model.Comment: 12 pages, 5 figure

    Structure and dynamics in glass-formers: predictability at large length scales

    Full text link
    Dynamic heterogeneity in glass-formers has been related to their static structure using the concept of dynamic propensity. We re-examine this relationship by analyzing dynamical fluctuations in two atomistic glass-formers and two theoretical models. We introduce quantitative statistical indicators which show that the dynamics of individual particles cannot be predicted on the basis of the propensity, nor by any structural indicator. However, the spatial structure of the propensity field does have predictive power for the spatial correlations associated with dynamic heterogeneity. Our results suggest that the quest for a connection between static and dynamic properties of glass-formers at the particle level is vain, but they demonstrate that such connection does exist on larger length scales.Comment: 7 pages; 4 figs - Extended, clarified versio

    On fundamental groups of quotient spaces

    Get PDF
    In classical covering space theory, a covering map induces an injection of fundamental groups. This paper reveals a dual property for certain quotient maps having connected fibers, with applications to orbit spaces of vector fields and leaf spaces in general.Comment: 12 pages, 4 figures; added references, keywords, and Remark 1.2; accepted at Topology and its Application

    Orbit Spaces of Gradient Vector Fields

    Full text link
    We study orbit spaces of generalized gradient vector fields for Morse functions. Typically, these orbit spaces are non-Hausdorff. Nevertheless, they are quite structured topologically and are amenable to study. We show that these orbit spaces are locally contractible. We also show that the quotient map associated to each such orbit space is a weak homotopy equivalence and has the path lifting property.Comment: 16 pages, 4 figures; strengthened a main result (Corollary 3.5) and updated the introduction and the conclusio

    Dissipation and Tunnelling in Quantum Hall Bilayers

    Full text link
    We discuss the interplay between transport and intrinsic dissipation in quantum Hall bilayers, within the framework of a simple thought experiment. We compute, for the first time, quantum corrections to the semiclassical dynamics of this system. This allows us to re-interpret tunnelling measurements on these systems. We find a strong peak in the zero-temperature tunnelling current that arises from the decay of Josephson-like oscillations into incoherent charge fluctuations. In the presence of an in-plane field, resonances in the tunnelling current develop an asymmetric lineshape.Comment: 4 pages, 3 figure

    Mechanisms of kinetic trapping in self-assembly and phase transformation

    Get PDF
    In self-assembly processes, kinetic trapping effects often hinder the formation of thermodynamically stable ordered states. In a model of viral capsid assembly and in the phase transformation of a lattice gas, we show how simulations in a self-assembling steady state can be used to identify two distinct mechanisms of kinetic trapping. We argue that one of these mechanisms can be adequately captured by kinetic rate equations, while the other involves a breakdown of theories that rely on cluster size as a reaction coordinate. We discuss how these observations might be useful in designing and optimising self-assembly reactions

    Fluctuation-dissipation ratios in the dynamics of self-assembly

    Full text link
    We consider two seemingly very different self-assembly processes: formation of viral capsids, and crystallization of sticky discs. At low temperatures, assembly is ineffective, since there are many metastable disordered states, which are a source of kinetic frustration. We use fluctuation-dissipation ratios to extract information about the degree of this frustration. We show that our analysis is a useful indicator of the long term fate of the system, based on the early stages of assembly.Comment: 8 pages, 6 figure
    • …
    corecore