20 research outputs found

    Experimental design of complement component 5a‐induced acute lung injury (C5a‐ALI): a role of CC‐chemokine receptor type 5 during immune activation by anaphylatoxin

    Full text link
    Excessive activation of the complement system is detrimental in acute inflammatory disorders. In this study, we analyzed the role of complement‐derived anaphylatoxins in the pathogenesis of experimental acute lung injury/acute respiratory distress syndrome (ALI/ARDS) in C57BL/6J mice. Intratracheal administration of recombinant mouse complement component (C5a) caused alveolar inflammation with abundant recruitment of Ly6‐G+CD11b+ leukocytes to the alveolar spaces and severe alveolar‐capillary barrier dysfunction (C5a‐ALI; EC50[C5a] = 20 ng/g body weight). Equimolar concentrations of C3a or desarginated C5a (C5adesArg) did not induce alveolar inflammation. The severity of C5a‐ALI was aggravated in C5‐deficient mice. Depletion of Ly6‐G+ cells and use of C5aR1‐/‐ bone marrow chimeras suggested an essential role of C5aR1+ hematopoietic cells in C5a‐ALI. Blockade of PI3K/Akt and MEK1/2 kinase pathways completely abrogated lung injury. The mechanistic description is that C5a altered the alveolar cytokine milieu and caused significant release of CC‐chemokines. Mice with genetic deficiency of CC‐chemokine receptor (CCR) type 5, the common receptor of chemokine (C‐C motif) ligand (CCL) 3, CCL4, and CCL5, displayed reduced lung damage. Moreover, treatment with a CCR5 antagonist, maraviroc, was protective against C5a‐ALI. In summary, our results suggest that the detrimental effects of C5a in this model are partly mediated through CCR5 activation downstream of C5aR1, which may be evaluated for potential therapeutic exploitation in ALI/ARDS.—Russkamp, N. F., Ruemmler, R., Roewe, J., Moore, B. B., Ward, P. A., Bosmann, M. Experimental design of complement component 5a‐induced acute lung injury (C5a‐ALI): a role of CC‐chemokine receptor type 5 during immune activation by anaphylatoxin. FASEB J. 29, 3762‐3772 (2015). www.fasebj.orgPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154372/1/fsb2029009014.pd

    HP-UX 11i tuning and performance

    No full text

    Flexible fibreoptic intubation in swine – improvement for resident training and animal safety alike

    No full text
    Background!#!Efficient airway management to facilitate tracheal intubation encompasses essential skills in anaesthesiologic and intensive care. The application of flexible fibreoptic intubation in patients with difficult airways has been identified as the recommended method in various international guidelines. However, providing the opportunity to adequately train residents can be challenging. Using large animals for practice during ongoing studies could help to improve this situation, but there is no recent data on fibreoptic intubation in swine available.!##!Methods!#!Thirty male German landrace pigs were anesthetized, instrumented and randomized into two groups. The animals were either intubated conventionally using direct laryngoscopy or a single-use flexible video-endoscope. The intervention was carried out by providers with 3 months experience in conventional intubation of pigs and a brief introduction into endoscopy. Intubation attempts were supervised and aborted, when SpO2 dropped below 93%. After three failed attempts, an experienced supervisor intervened and performed the intubation. Intubation times and attempts were recorded and analysed.!##!Results!#!Flexible fibreoptic intubation showed a significantly higher success rate in first attempt endotracheal tube placement (75% vs. 47%) with less attempts overall (1.3 ± 0.6 vs. 2.1 ± 1.3, P = 0.043). Conventional intubation was faster (42 s ± 6 s vs. 67 s ± 10s, P < 0.001), but showed a higher complication rate and more desaturation episodes during the trial.!##!Conclusions!#!Flexible fibreoptic intubation in swine is feasible and appears to be a safer and more accessible method for inexperienced users to learn. This could not only improve resident training options in hospitals with animal research facilities but might also prevent airway complications and needless animal suffering

    Intrabronchial application of extracellular histones shows no proinflammatory effects in swine in a translational pilot study

    No full text
    Objective!#!Extracellular histones have been identified as one molecular factor that can cause and sustain alveolar damage and were linked to high mortality rates in critically ill patients. In this pilot study, we wanted to validate the proinflammatory in vivo effects of local histone application in a prospective translational porcine model. This was combined with the evaluation of an experimental acute lung injury model using intrabronchial lipopolysaccharides, which has been published previously.!##!Results!#!The targeted application of histones was successful in all animals. Animals showed decreased oxygenation after instillation, but no differences could be detected between the sham and histone treatments. The histologic analyses and inflammatory responses indicated that there were no differences in tissue damage between the groups

    Analysis of cerebral Interleukin-6 and tumor necrosis factor alpha patterns following different ventilation strategies during cardiac arrest in pigs

    No full text
    Hypoxia-induced neuroinflammation after cardiac arrest has been shown to be mitigated by different ventilation methods. In this prospective randomized animal trial, 35 landrace pigs were randomly divided into four groups: intermittent positive pressure ventilation (IPPV), synchronized ventilation 20 mbar (SV 20 mbar), chest compression synchronized ventilation 40 mbar (CCSV 40 mbar) and a control group (Sham). After inducing ventricular fibrillation, basic life support (BLS) and advanced life support (ALS) were performed, followed by post-resuscitation monitoring. After 6 hours, the animals were euthanized, and direct postmortem brain tissue samples were taken from the hippocampus (HC) and cortex (Cor) for molecular biological investigation of cytokine mRNA levels of Interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα). The data analysis showed that CCSV 40 mbar displayed low TNFα mRNA-levels, especially in the HC, while the highest TNFα mRNA-levels were detected in SV 20 mbar. The results indicate that chest compression synchronized ventilation may have a potential positive impact on the cytokine expression levels post-resuscitation. Further studies are needed to derive potential therapeutic algorithms from these findings

    Clinical dosage of lidocaine does not impact the biomedical outcome of sepsis-induced acute respiratory distress syndrome in a porcine model

    No full text
    Background Sepsis is a common disease in intensive care units worldwide, which is associated with high morbidity and mortality. This process is often associated with multiple organ failure including acute lung injury. Although massive research efforts have been made for decades, there is no specific therapy for sepsis to date. Early and best treatment is crucial. Lidocaine is a common local anesthetic and used worldwide. It blocks the fast voltage-gated sodium (Na+) channels in the neuronal cell membrane responsible for signal propagation. Recent studies show that lidocaine administered intravenously improves pulmonary function and protects pulmonary tissue in pigs under hemorrhagic shock, sepsis and under pulmonary surgery. The aim of this study is to show that lidocaine inhalative induces equivalent effects as lidocaine intravenously in pigs in a lipopolysaccharide (LPS)-induced sepsis with acute lung injury. Methods After approval of the local State and Institutional Animal Care Committee, to induce the septic inflammatory response a continuous infusion of lipopolysaccharide (LPS) was administered to the pigs in deep anesthesia. Following induction and stabilisation of sepsis, the study medication was randomly assigned to one of three groups: (1) lidocaine intravenously, (2) lidocaine per inhalation and (3) sham group. All animals were monitored for 8 h using advanced and extended cardiorespiratory monitoring. Postmortem assessment included pulmonary mRNA expression of mediators of early inflammatory response (IL-6 & TNF-alpha), wet-to-dry ratio and lung histology. Results Acute respiratory distress syndrome (ARDS) was successfully induced after sepsis-induction with LPS in all three groups measured by a significant decrease in the PaO2/FiO2 ratio. Further, septic hemodynamic alterations were seen in all three groups. Leucocytes and platelets dropped statistically over time due to septic alterations in all groups. The wet-to-dry ratio and the lung histology showed no differences between the groups. Additionally, the pulmonary mRNA expression of the inflammatory mediators IL-6 and TNF-alpha showed no significant changes between the groups. The proposed anti-inflammatory and lung protective effects of lidocaine in sepsis-induced acute lung injury could not be proven in this study

    Levosimendan Ameliorates Cardiopulmonary Function but Not Inflammatory Response in a Dual Model of Experimental ARDS

    No full text
    The calcium sensitiser levosimendan, which is used as an inodilator to treat decompensated heart failure, may also exhibit anti-inflammatory properties. We examined whether treatment with levosimendan improves cardiopulmonary function and is substantially beneficial to the inflammatory response in acute respiratory response syndrome (ARDS). Levosimendan was administered intravenously in a new experimental porcine model of ARDS. For comparison, we used milrinone, another well-known inotropic agent. Our results demonstrated that levosimendan intravenously improved hemodynamics and lung function in a porcine ARDS model. Significant beneficial alterations in the inflammatory response and lung injury were not detected

    A novel non-invasive nociceptive monitoring approach fit for intracerebral surgery: a retrospective analysis

    No full text
    Background Measuring depth of anesthesia during intracerebral surgery is an important task to guarantee patient safety, especially while the patient is fixated in a Mayfield-clamp. Processed electro-encephalography measurements have been established to monitor deep sedation. However, visualizing nociception has not been possible until recently and has not been evaluated for the neurosurgical setting. In this single-center, retrospective observational analysis, we routinely collected the nociceptive data via a nociception level monitor (NOL®) of 40 patients undergoing intracerebral tumor resection and aimed to determine if this monitoring technique is feasible and delivers relevant values to potentially base therapeutic decisions on. Methods Forty patients (age 56 ± 18 years) received total intravenous anesthesia and were non-invasively connected to the NOL® via a finger clip as well as a bispectral-index monitoring (BIS®) to confirm deep sedation. The measured nociception levels were retrospectively evaluated at specific time points of nociceptive stress (intubation, Mayfield-positioning, incision, extubation) and compared to standard vital signs. Results Nociceptive measurements were successfully performed in 35 patients. The largest increase in nociceptive stimulation occurred during intubation (NOL® 40 ± 16) followed by Mayfield positioning (NOL® 39 ± 16) and incision (NOL® 26 ± 12). Correlation with BIS measurements confirmed a sufficiently deep sedation during all analyzed time points (BIS 45 ± 13). Overall, patients showed an intraoperative NOL® score of 10 or less in 56% of total intervention time. Conclusions Nociceptive monitoring using the NOL® system during intracerebral surgery is feasible and might yield helpful information to support therapeutic decisions. This could help to reduce hyperanalgesia, facilitating shorter emergence periods and less postoperative complications. Prospective clinical studies are needed to further examine the potential benefits of this monitoring approach in a neurosurgical context. Trial registration German trial registry, registration number DRKS00029120

    High PEEP Levels during CPR Improve Ventilation without Deleterious Haemodynamic Effects in Pigs

    No full text
    Background: Invasive ventilation during cardiopulmonary resuscitation (CPR) is very complex due to unique thoracic pressure conditions. Current guidelines do not provide specific recommendations for ventilation during ongoing chest compressions regarding positive end-expiratory pressure (PEEP). This trial examines the cardiopulmonary effects of PEEP application during CPR. Methods: Forty-two German landrace pigs were anaesthetised, instrumented, and randomised into six intervention groups. Three PEEP levels (0, 8, and 16 mbar) were compared in high standard and ultralow tidal volume ventilation. After the induction of ventricular fibrillation, mechanical chest compressions and ventilation were initiated and maintained for thirty minutes. Blood gases, ventilation/perfusion ratio, and electrical impedance tomography loops were taken repeatedly. Ventilation pressures and haemodynamic parameters were measured continuously. Postmortem lung tissue damage was assessed using the diffuse alveolar damage (DAD) score. Statistical analyses were performed using SPSS, and p values <0.05 were considered significant. Results: The driving pressure (Pdrive) showed significantly lower values when using PEEP 16 mbar than when using PEEP 8 mbar (p = 0.045) or PEEP 0 mbar (p < 0.001) when adjusted for the ventilation mode. Substantially increased overall lung damage was detected in the PEEP 0 mbar group (vs. PEEP 8 mbar, p = 0.038; vs. PEEP 16 mbar, p = 0.009). No significant differences in mean arterial pressure could be detected. Conclusion: The use of PEEP during CPR seems beneficial because it optimises ventilation pressures and reduces lung damage without significantly compromising blood pressure. Further studies are needed to examine long-term effects in resuscitated animals
    corecore