25,016 research outputs found

    Scanning the critical fluctuations -- application to the phenomenology of the two-dimensional XY-model --

    Full text link
    We show how applying field conjugated to the order parameter, may act as a very precise probe to explore the probability distribution function of the order parameter. Using this `magnetic-field scanning' on large-scale numerical simulations of the critical 2D XY-model, we are able to discard the conjectured double-exponential form of the large-magnetization asymptote.Comment: 4 pages, 4 figure

    Passive States for Essential Observers

    Full text link
    The aim of this note is to present a unified approach to the results given in \cite{bb99} and \cite{bs04} which also covers examples of models not presented in these two papers (e.g. dd-dimensional Minkowski space-time for d3d\geq 3). Assuming that a state is passive for an observer travelling along certain (essential) worldlines, we show that this state is invariant under the isometry group, is a KMS-state for the observer at a temperature uniquely determined by the structure constants of the Lie algebra involved and fulfills (a variant of) the Reeh-Schlieder property. Also the modular objects associated to such a state and the observable algebra of an observer are computed and a version of weak locality is examined.Comment: 27 page

    Single Field Baryogenesis

    Full text link
    We propose a new variant of the Affleck-Dine baryogenesis mechanism in which a rolling scalar field couples directly to left- and right-handed neutrinos, generating a Dirac mass term through neutrino Yukawa interactions. In this setup, there are no explicitly CP violating couplings in the Lagrangian. The rolling scalar field is also taken to be uncharged under the BLB - L quantum numbers. During the phase of rolling, scalar field decays generate a non-vanishing number density of left-handed neutrinos, which then induce a net baryon number density via electroweak sphaleron transitions.Comment: 4 pages, LaTe

    Noise-Activated Escape from a Sloshing Potential Well

    Full text link
    We treat the noise-activated escape from a one-dimensional potential well of an overdamped particle, to which a periodic force of fixed frequency is applied. We determine the boundary layer behavior, and the physically relevant length scales, near the oscillating well top. We show how stochastic behavior near the well top generalizes the behavior first determined by Kramers, in the case without forcing. Both the case when the forcing dies away in the weak noise limit, and the case when it does not, are examined. We also discuss the relevance of various scaling regimes to recent optical trap experiments.Comment: 9 pages, no figures, REVTeX, expanded versio

    Reduced Gutzwiller formula with symmetry: case of a finite group

    Get PDF
    We consider a classical Hamiltonian HH on R2d\mathbb{R}^{2d}, invariant by a finite group of symmetry GG, whose Weyl quantization H^\hat{H} is a selfadjoint operator on L2(Rd)L^2(\mathbb{R}^d). If χ\chi is an irreducible character of GG, we investigate the spectrum of its restriction H^_χ\hat{H}\_\chi to the symmetry subspace L2_χ(Rd)L^2\_\chi(\mathbb{R}^d) of L2(Rd)L^2(\mathbb{R}^d) coming from the decomposition of Peter-Weyl. We give reduced semi-classical asymptotics of a regularised spectral density describing the spectrum of H^_χ\hat{H}\_\chi near a non critical energy ERE\in\mathbb{R}. If Σ_E:={H=E}\Sigma\_E:=\{H=E \} is compact, assuming that periodic orbits are non-degenerate in Σ_E/G\Sigma\_E/G, we get a reduced Gutzwiller trace formula which makes periodic orbits of the reduced space Σ_E/G\Sigma\_E/G appear. The method is based upon the use of coherent states, whose propagation was given in the work of M. Combescure and D. Robert.Comment: 20 page

    Electron-electron interaction corrections to the thermal conductivity in disordered conductors

    Full text link
    We evaluate the electron-electron interaction corrections to the electronic thermal conductivity in a disordered conductor in the diffusive regime. We use a diagrammatic many-body method analogous to that of Altshuler and Aronov for the electrical conductivity. We derive results in one, two and three dimensions for both the singlet and triplet channels, and in all cases find that the Wiedemann-Franz law is violated.Comment: 8 pages, 2 figures Typos corrected in formulas (15) and (A.4) and Table 1; discussion of previous work in introduction extended; reference clarifying different definitions of parameter F adde

    A near-field scanned microwave probe for spatially localized electrical metrology

    Full text link
    We have developed a near-field scanned microwave probe with a sampling volume of approximately 10 micron in diameter, which is the smallest one achieved in near-field microwave microscopy. This volume is defined to confine close to 100 percent of the probe net sampling reactive energy, thus making the response virtually independent on the sample properties outside of this region. The probe is formed by a 4 GHz balanced stripline resonator with a few-micron tip size. It provides non-contact, non-invasive measurement and is uniquely suited for spatially localized electrical metrology applications, e.g. on semiconductor production wafers.Comment: 6 pages, 3 figures, submitted to Appl. Phys. Let
    corecore